Cho hàm số \[y = f\left( x \right)\] liên tục trên , \[f\left( 0 \right) = - 1;\,f\left( 2 \right) = 1;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty ;\,\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty \]. Biết đồ thị \[y = f'\left( x \right)\] hình vẽ. Có bao nhiêu số nguyên \[m\] để phương trình \[f\left( x \right) = m\] có 3 nghiệm phân biệt?

Quảng cáo
Trả lời:

Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Câu 2
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.