Câu hỏi:

11/02/2023 1,231

Cho hình chóp đều \[S.ABC\]\[AB = 2\sqrt 3 \], mặt bên tạo với đáy một góc \[{45^0}\].

            Thể tích của khối chóp \[S.ABC\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Gọi \[D\] trung điểm của \[BC\]\[E\] là trọng tâm \[\Delta ABC\]. Do \[S.ABC\]hình chóp đều nên \[SE\] là đường cao của hình chóp. Ta có:

Media VietJack

 

\[\left\{ {\begin{array}{*{20}{c}}{\left( {SBC} \right) \cap \left( {ABC} \right) = BC}\\{SD \bot BC,\,\,SD \subset \left( {SBC} \right)}\\{AD \bot BC,\,\,AD \subset \left( {ABC} \right)}\end{array}} \right.\]
Góc giữa hai mặt phẳng \[\left( {SBC} \right)\]\[\left( {ABC} \right)\] là góc giữa \[SD\]\[AD\], đó là \[\widehat {SDA}\]. Theo bài ra \[\widehat {SDA} = {45^0}\].
\[{\mathcal{B}_{ABC}} = {\left( {2\sqrt 3 } \right)^2}\frac{{\sqrt 3 }}{4} = 3\sqrt 3 \].
\[AD = 2\sqrt 3 .\frac{{\sqrt 3 }}{2} = 3\]; \[ED = \frac{1}{3}AD = \frac{1}{3}.3 = 1\].
Tam giác \[SED\] vuông tại \[E\]\[\widehat {SDE} = {45^0}\] nên tam giác \[SED\] vuông cân tại \[E\].
Do đó \[SE = ED = 1\].
\[{V_{S.ABC}} = \frac{1}{3}{\mathcal{B}_{ABC}}.SE = \frac{1}{3}.3\sqrt 3 .1 = \sqrt 3 \].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số nào sau đây có đồ thị như hình vẽ.
Media VietJack

Xem đáp án » 11/02/2023 6,948

Câu 2:

Giá trị lớn nhất của hàm số \(y = \sqrt {9 - {x^2}} \) bằng

Xem đáp án » 11/02/2023 6,512

Câu 3:

Đồ thị hàm số nào sau đây có dạng như hình vẽ.
Media VietJack

Xem đáp án » 10/02/2023 5,154

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình sau. Chọn mệnh đề sai.
Media VietJack

Xem đáp án » 10/02/2023 4,302

Câu 5:

Cho khối chóp S.ABC có thể tích bằng 12. Gọi M, N, P lần lượt thuộc cạnh SA, SB, SC sao cho SA=2SM, Media VietJack , SC = 4SP. Thể tích của khối đa diện ABCMNP bằng

Xem đáp án » 10/02/2023 3,975

Câu 6:

Hàm số nào sau đây có đồ thị như hình vẽ
Media VietJack

Xem đáp án » 10/02/2023 3,124

Câu 7:

Cho hình chóp \(S.ABC\) có chiều cao \(SA = 3a\), đáy \(\Delta ABC\) vuông tại \(A\), \(AB = a,AC = 2a\). Thể tích của nó bằng
Media VietJack

Xem đáp án » 11/02/2023 2,777
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay