Lời giải
Chọn D
Gọi \[M\left( {{x_0};{y_0}} \right)\] là tiếp điểm của tiếp tuyến cần tìm.
Ta có \[y' = 3{x^2} - 3\]. Vì tiếp tuyến song song với đường thẳng \[\left( d \right):y = 9x + 17\] nên phương trình tiếp tuyến có dạng \[y = 9x + b\], \[\left( {b \ne 17} \right)\].
Khi đó \[y'\left( {{x_0}} \right) = 9 \Leftrightarrow 3x_0^2 - 3 = 9 \Leftrightarrow {x_0} = \pm 2\].
Với \[{x_0} = 2\], ta có \[{y_0} = {2^3} - 3.2 + 1 = 3\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x - 2} \right) + 3 \Leftrightarrow y = 9x - 15\].
Với \[{x_0} = - 2\], ta có \[{y_0} = {\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x + 2} \right) - 1 \Leftrightarrow y = 9x + 17\]. (loại vì \[b \ne 17\])
Vậy có 1 phương trình tiếp tuyến thỏa mãn ycbt là \[y = 9x - 15\].
về câu hỏi!