Câu hỏi:

15/02/2023 760 Lưu

Cho hàm số có bảng biến thiên như hình dưới đây. Khẳng định nào sau đây là đúng?
Media VietJack

A. Giá trị nhỏ nhất của hàm số trên tập số thực bằng \[ - \frac{1}{6}\].
B. Giá trị cực đại của hàm số bằng 0.
C. Giá trị lớn nhất của hàm số trên tập số thực bằng 0.
D. Giá trị cực tiểu của hàm số bằng 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải

Chọn B

Từ bảng biên thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Câu 2

A. \(\frac{3}{{\sqrt[3]{4}}}\).
B. \(\frac{1}{{\sqrt 2 }}\).
C. \(1\).
D. \(\frac{1}{{\sqrt[3]{2}}}\).

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \frac{{x + 2}}{{x + 1}}\).
B. \(y = \frac{{2x + 1}}{{x + 1}}\).
C. \(y = \frac{{x - 1}}{{x + 1}}\).
D. \(y = \frac{{x + 3}}{{1 - x}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = {x^2} - 3x\).
B. \(y = \frac{{3x + 1}}{{2x - 1}}\).
C. \(y = {x^3} - 3x + 1\).
D. \(y = {x^4} + 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP