Câu hỏi:

15/02/2023 211 Lưu

Tổng số cạnh và số đỉnh của hình bát diện đều bằng bao nhiêu?

A. \(18\).
B. \(14\).
C. \(12\).
D. \(20\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải
Chọn A

Hình bát diênh đều thuộc loại \(\{ {\kern 1pt} {\kern 1pt} 3{\kern 1pt} {\kern 1pt} ;{\kern 1pt} 4\} \) có \(12\) cạnh và \[6\] đỉnh.

Vậy, tổng số cạnh và số đỉnh của hình bát diện đều bằng:\(12 + 6 = 18\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Câu 2

A. \(\frac{3}{{\sqrt[3]{4}}}\).
B. \(\frac{1}{{\sqrt 2 }}\).
C. \(1\).
D. \(\frac{1}{{\sqrt[3]{2}}}\).

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \frac{{x + 2}}{{x + 1}}\).
B. \(y = \frac{{2x + 1}}{{x + 1}}\).
C. \(y = \frac{{x - 1}}{{x + 1}}\).
D. \(y = \frac{{x + 3}}{{1 - x}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = {x^2} - 3x\).
B. \(y = \frac{{3x + 1}}{{2x - 1}}\).
C. \(y = {x^3} - 3x + 1\).
D. \(y = {x^4} + 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP