Câu hỏi:

16/02/2023 6,837

Cho hàm số \(y = {x^3} + ({m^2} + 1)x + {m^2} - 2\). Tìm số thực dương \(m\) để hàm số có giá trị nhỏ nhất trên đoạn \(\left[ {0;2} \right]\) bằng \(2\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Tập xác định \(D = R\).

Ta có \(y' = 3{x^2} + {m^2} + 1\; > 0\) với \(\forall m \in R\) \( \Rightarrow \) hàm số đồng biến trên đoạn \(\left[ {0;2} \right]\).

Do đó \(\mathop {\min }\limits_{\left[ {0;2} \right]} y = y(0) = {m^2} - 2 = 2 \Rightarrow {m^2} = 4 \Rightarrow m = \pm 2\)

\(m > 0\) nên chọn \(m = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Câu 2

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP