Câu hỏi:

16/02/2023 815 Lưu

Cho khối chóp tam giác \(S.ABC\)\(SA \bot \left( {ABC} \right)\), tam giác \(ABC\) có độ dài \(3\) cạnh là \(AB = 5a\); \(BC = 8a\); \(AC = 7a\), góc giữa \(SB\)\(\left( {ABC} \right)\)\(45^\circ \). Tính thể tích khối chóp \(S.ABC\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Media VietJack

Ta có nửa chu vi \(\Delta ABC\)\(p = \frac{{AB + AC + BC}}{2} = 10a\).

Diện tích \(\Delta ABC\)\({S_{\Delta ABC}} = \sqrt {10a.5a.3a.2a} = 10\sqrt 3 {a^2}\).

\(SA \bot \left( {ABC} \right)\) nên \(\Delta SAB\) vuông, cân tại \(A\) nên \(SA = AB = 5\).

Thể tích khối chóp \(S.ABC\)\({V_{S.ABC}} = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{1}{3}5a.10\sqrt 3 {a^2} = \frac{{50\sqrt 3 }}{3}{a^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Câu 2

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP