Câu hỏi:

16/02/2023 2,577

Cho hàm số \(y = f\left( x \right)\)có bảng xét dấu như hình vẽ

Media VietJack

Tìm khoảng đồng biến của hàm số \[y = g(x) = 2f(1 - x) - \frac{1}{5}{x^5} + \frac{5}{4}{x^4} - 3{{\rm{x}}^3}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải

Chọn B

Coi \(f'\left( x \right) = \left( {x + 2} \right)\left( {x + 1} \right)x\left( {x - 1} \right)\)có bảng xét dấu như trên.

\[g'(x) = - 2f'(1 - x) - {x^4} + 5{x^3} - 6{{\rm{x}}^2}\]

Ta đi xét dấu \[g'(x) = P + Q\]. Với:

\(P = - 2f'\left( {1 - x} \right) = - 2\left( {3 - x} \right)\left( {2 - x} \right)\left( {1 - x} \right)\left( { - x} \right) = 2x\left( {3 - x} \right)\left( {2 - x} \right)\left( {1 - x} \right)\)

Bảng xét dấu của P

Media VietJack

\[Q = - {x^4} + 5{x^3} - 6{{\rm{x}}^2} = - {x^2}\left( {x - 2} \right)\left( {x - 3} \right)\]

Bảng xét dấu của \[Q\]

Media VietJack

Từ hai BXD của \(P,\,Q\). Ta có \(P > 0,\,Q > 0\)với \(\forall x \in \left( {2;\,3} \right)\)nên \(g'(x) = P + Q > 0\)với \(\forall x \in \left( {2;\,3} \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Câu 2

Với giá trị nào của \(x\) thì hàm số \(y = {x^2} + \frac{1}{x}\) đạt giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)?

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình dưới đây?
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Hàm số nào dưới đây không có cực trị ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay