Câu hỏi:

16/02/2023 741

Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = \frac{{mx - 1}}{{x - m}}\)(\(m\) là tham số thực) đồng biến trên khoảng \(\left( {1;3} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

TXĐ : \(D = \mathbb{R}\backslash \left\{ m \right\}\).

Ta có \(y' = \frac{{ - {m^2} + 1}}{{{{\left( {x - m} \right)}^2}}}\).

Hàm số đồng biến trên khoảng \(\left( {1;3} \right)\) khi và chỉ khi

\(y' > 0,\forall x \in \left( {1;3} \right) \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\x - m \ne 0,x \in \left( {1;3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\m \notin \left( {1;3} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\\left[ \begin{array}{l}m \le 1\\m \ge 3\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 1\\\left[ \begin{array}{l}m \le 1\\m \ge 3\end{array} \right.\end{array} \right. \Leftrightarrow - 1 < m < 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Câu 2

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP