Câu hỏi:

16/02/2023 433

Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = \frac{{mx - 1}}{{x - m}}\)(\(m\) là tham số thực) đồng biến trên khoảng \(\left( {1;3} \right)\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

TXĐ : \(D = \mathbb{R}\backslash \left\{ m \right\}\).

Ta có \(y' = \frac{{ - {m^2} + 1}}{{{{\left( {x - m} \right)}^2}}}\).

Hàm số đồng biến trên khoảng \(\left( {1;3} \right)\) khi và chỉ khi

\(y' > 0,\forall x \in \left( {1;3} \right) \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\x - m \ne 0,x \in \left( {1;3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\m \notin \left( {1;3} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 1 > 0\\\left[ \begin{array}{l}m \le 1\\m \ge 3\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 1\\\left[ \begin{array}{l}m \le 1\\m \ge 3\end{array} \right.\end{array} \right. \Leftrightarrow - 1 < m < 1\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tứ giác \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy và \[SA = a\sqrt 2 \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\].

Xem đáp án » 15/02/2023 35,907

Câu 2:

Với giá trị nào của \(x\) thì hàm số \(y = {x^2} + \frac{1}{x}\) đạt giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)?

Xem đáp án » 16/02/2023 15,738

Câu 3:

Cho hàm số \(f\left( x \right)\) xác định trên tập \(\mathbb{R}\)và có đạo hàm là \(f'\left( x \right) = \left( {x - 1} \right){\left( {2x - 1} \right)^2}\left( {3 - x} \right).\) Hàm số \(f\left( x \right)\)đồng biến trên khoảng nào sau đây?

Xem đáp án » 15/02/2023 12,976

Câu 4:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình dưới đây?
Media VietJack

Xem đáp án » 15/02/2023 12,745

Câu 5:

Hàm số nào dưới đây không có cực trị ?

Xem đáp án » 15/02/2023 11,201

Câu 6:

Cho hàm số \(y = a{x^4} + b{x^2} + c\). Biết rằng đồ thị hàm số có hai điểm cực trị là \(A\left( {0;\,2} \right)\)và \(B\left( {2;\, - 14} \right)\). Giá trị của \(f\left( 1 \right)\) bằng

Xem đáp án » 16/02/2023 7,734

Câu 7:

Cho hình lăng trụ đều \[ABC.A'B'C'\]có cạnh đáy bằng \[\frac{{2a\sqrt 3 }}{3}\]. Đường thẳng \[BC'\] tạo với mặt phẳng \[\left( {ACC'A'} \right)\] góc \[\alpha \] thỏa mãn \[\cot \alpha = 2\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng

Xem đáp án » 16/02/2023 7,611
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua