Câu hỏi:

16/02/2023 3,760

Cho tứ diện \(ABCD\) có \(AB = 3,AC = 4,AD = 6\), \(\widehat {BAC} = {60^o},\) \(\widehat {CAD} = {90^o},\) \(\widehat {BAD} = {120^o}\). Thể tích của khối tứ diện \(ABCD\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Media VietJack

Lấy các điểm \(C',\,\)\(D'\) lần lượt trên cạnh và \(AC,AD\) sao cho \(AB = AC' = AD' = 3\).

Áp dụng định lí Côsin ta có:

\(BD{'^2} = A{B^2} + A{D^{'2}} - 2AB.AD'\cos \widehat {BAD} = 9 + 9 - 2.9.\left( { - \frac{1}{2}} \right) = 9.3 = 27 \Leftrightarrow BD' = 3\sqrt 3 \).

Tam giác \(BAC'\) là tam giác đều nên \(BC' = 3\), tam giác \(D'AC'\) vuông tại \(A\) nên \(C'D' = 3\sqrt 2 \).

Xét tam giác \(BD'C'\)\(B{D^{'2}} = B{C^{'2}} + C'{D^{'2}}\), nên tam giác vuông tại \(C'\).

Gọi \(H\)là hình chiếu vuông góc của \(A\) trên \(\left( {BD'C'} \right)\), vì \(AB = AC' = AD'\) nên \(HB = HC' = HD'\). Mặt khác, tam giác \(BD'C'\) vuông tại \(C'\) nên \(H\)là trung điểm của \(BD'\).

Ta có, \(AH = \sqrt {A{B^2} - \frac{{B{D^{'2}}}}{4}} = \sqrt {9 - \frac{{27}}{4}} = \frac{3}{2}\).

Thể tích khối tứ diện \(ABC'D'\) bằng

                              \({V_{ABC'D'}} = \frac{1}{3}AH.{S_{BC'D'}} = \frac{1}{3}.\frac{3}{2}.\frac{1}{2}.3.3\sqrt 2 = \frac{{9\sqrt 2 }}{4}\)

Áp dụng công thức tỉ số thể tích ta có

\(\frac{{{V_{ABC'D'}}}}{{{V_{ABCD}}}} = \frac{{AC'.AD'}}{{AC.AD}} = \frac{3}{4}.\frac{3}{6} = \frac{9}{{24}} \Rightarrow {V_{ABCD}} = \frac{{24}}{9}{V_{ABC'D'}} = 6\sqrt 2 \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Câu 2

Với giá trị nào của \(x\) thì hàm số \(y = {x^2} + \frac{1}{x}\) đạt giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)?

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình dưới đây?
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Hàm số nào dưới đây không có cực trị ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay