Câu hỏi:

16/02/2023 2,127

Cho tứ diện \(ABCD\) có \(AB = 3,AC = 4,AD = 6\), \(\widehat {BAC} = {60^o},\) \(\widehat {CAD} = {90^o},\) \(\widehat {BAD} = {120^o}\). Thể tích của khối tứ diện \(ABCD\) bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Media VietJack

Lấy các điểm \(C',\,\)\(D'\) lần lượt trên cạnh và \(AC,AD\) sao cho \(AB = AC' = AD' = 3\).

Áp dụng định lí Côsin ta có:

\(BD{'^2} = A{B^2} + A{D^{'2}} - 2AB.AD'\cos \widehat {BAD} = 9 + 9 - 2.9.\left( { - \frac{1}{2}} \right) = 9.3 = 27 \Leftrightarrow BD' = 3\sqrt 3 \).

Tam giác \(BAC'\) là tam giác đều nên \(BC' = 3\), tam giác \(D'AC'\) vuông tại \(A\) nên \(C'D' = 3\sqrt 2 \).

Xét tam giác \(BD'C'\)\(B{D^{'2}} = B{C^{'2}} + C'{D^{'2}}\), nên tam giác vuông tại \(C'\).

Gọi \(H\)là hình chiếu vuông góc của \(A\) trên \(\left( {BD'C'} \right)\), vì \(AB = AC' = AD'\) nên \(HB = HC' = HD'\). Mặt khác, tam giác \(BD'C'\) vuông tại \(C'\) nên \(H\)là trung điểm của \(BD'\).

Ta có, \(AH = \sqrt {A{B^2} - \frac{{B{D^{'2}}}}{4}} = \sqrt {9 - \frac{{27}}{4}} = \frac{3}{2}\).

Thể tích khối tứ diện \(ABC'D'\) bằng

                              \({V_{ABC'D'}} = \frac{1}{3}AH.{S_{BC'D'}} = \frac{1}{3}.\frac{3}{2}.\frac{1}{2}.3.3\sqrt 2 = \frac{{9\sqrt 2 }}{4}\)

Áp dụng công thức tỉ số thể tích ta có

\(\frac{{{V_{ABC'D'}}}}{{{V_{ABCD}}}} = \frac{{AC'.AD'}}{{AC.AD}} = \frac{3}{4}.\frac{3}{6} = \frac{9}{{24}} \Rightarrow {V_{ABCD}} = \frac{{24}}{9}{V_{ABC'D'}} = 6\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tứ giác \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy và \[SA = a\sqrt 2 \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\].

Xem đáp án » 15/02/2023 28,074

Câu 2:

Với giá trị nào của \(x\) thì hàm số \(y = {x^2} + \frac{1}{x}\) đạt giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)?

Xem đáp án » 16/02/2023 15,203

Câu 3:

Cho hàm số \(f\left( x \right)\) xác định trên tập \(\mathbb{R}\)và có đạo hàm là \(f'\left( x \right) = \left( {x - 1} \right){\left( {2x - 1} \right)^2}\left( {3 - x} \right).\) Hàm số \(f\left( x \right)\)đồng biến trên khoảng nào sau đây?

Xem đáp án » 15/02/2023 12,609

Câu 4:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình dưới đây?
Media VietJack

Xem đáp án » 15/02/2023 12,064

Câu 5:

Hàm số nào dưới đây không có cực trị ?

Xem đáp án » 15/02/2023 10,950

Câu 6:

Cho hàm số \(y = a{x^4} + b{x^2} + c\). Biết rằng đồ thị hàm số có hai điểm cực trị là \(A\left( {0;\,2} \right)\)và \(B\left( {2;\, - 14} \right)\). Giá trị của \(f\left( 1 \right)\) bằng

Xem đáp án » 16/02/2023 7,246

Câu 7:

Cho hình lăng trụ đều \[ABC.A'B'C'\]có cạnh đáy bằng \[\frac{{2a\sqrt 3 }}{3}\]. Đường thẳng \[BC'\] tạo với mặt phẳng \[\left( {ACC'A'} \right)\] góc \[\alpha \] thỏa mãn \[\cot \alpha = 2\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng

Xem đáp án » 16/02/2023 7,244

Bình luận


Bình luận