Câu hỏi:
17/02/2023 3,507Cho khối chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Xác định góc giữa hai mặt phẳng \(\left( \alpha \right);\,\left( \beta \right)\)
- Tìm giao tuyến \(\Delta \) của \(\left( {\alpha ;\beta } \right)\)
- Xác định 1 mặt phẳng \(\left( \gamma \right) \bot \Delta \)
- Tìm các giao tuyến \(a = \left( \alpha \right) \cap \left( \gamma \right),\,\,\,b = \left( \beta \right) \cap \left( \gamma \right)\)
- Góc giữa hai mặt phẳng \(\left( {\alpha ;\beta } \right):\,\,\,\left( {\left( \alpha \right);\left( \beta \right)} \right) = \left( {a;b} \right)\)
Cách giải:
Kẻ \(AH \bot BC,\,\,H \subset BC\)
Ta có: \(\left( {SBC} \right) \cap \left( {ABC} \right) = BC\)
\(BC \bot AH,\,\,\,BC \bot SA\,\,do\,\,SA \bot \left( {ABC} \right) \Rightarrow BC \bot \left( {SAH} \right)\)
\( \Rightarrow \left( {\left( {SAC} \right);\left( {ABC} \right)} \right) = \left( {SH;AH} \right) = SHA = {45^0}\)
\(\Delta ABC\) vuông tại A \( \Rightarrow AB = \sqrt {B{C^2} - A{C^2}} = \sqrt {{{\left( {3a} \right)}^2} - {a^2}} = 2\sqrt 2 a\) và
\({S_{ABC}} = \frac{1}{2}.AB.AC = \frac{1}{2}.2\sqrt 2 a.a = \sqrt 2 {a^2}\)
\(AH \bot BC \Rightarrow AH.BC = AB.AC \Rightarrow AH = \frac{{2\sqrt 2 a.a}}{{3a}} = \frac{{2\sqrt 2 a}}{3}\)
\(SAH\) vuông tại A, \(SHA = {45^0} \Rightarrow \Delta SAH\) vuông cân tại A \( \Rightarrow SA = AH = \frac{{2\sqrt 2 a}}{3}\)
Thể tích khối chóp S.ABC: \(V = \frac{1}{3}.SA.{S_{ & ABC}} = \frac{1}{3}.\frac{{2\sqrt 2 a}}{3}.\sqrt 2 {a^2} = \frac{4}{9}{a^3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:
Câu 2:
Phương trình \({\log ^2}x - \log x - 2 = 0\) có bao nhiêu nghiệm?
Câu 3:
Câu 4:
Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:
Câu 5:
Tập xác định của hàm số \(y = {\left( {2x - 1} \right)^{ - \frac{1}{2}}}\) là
Câu 6:
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:
về câu hỏi!