Câu hỏi:
19/02/2023 6,577Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\) và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Thể tích khối chóp: \(V = Sh\)
Cách giải:
Tam giác ABC cân tại A, \(ABC = {120^0}\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}.AB.BC\sin {120^0} = \frac{1}{2}.a.a.\frac{{\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{4} \Rightarrow {S_{BCD}} = {S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích V của khối chóp S.BCD: \(V = \frac{1}{3}.SA.{S_{BCD}} = \frac{1}{3}.\sqrt 3 a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}}}{4}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Câu 2:
Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)
Câu 3:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Câu 6:
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
về câu hỏi!