Câu hỏi:

20/02/2023 312

Tìm giá trị cực tiểu \({y_{CT}}\) của hàm số \(y = - {x^4} + 2{x^2} + 2\)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

+) Tính y’ và giải phương trình \(y' = 0\)

+) Lập bảng xét dấu của y’ và rút ra kết luận.

+) Điểm \(x = {x_0}\) được gọi là điểm cực tiểu của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu từ âm sang dương.

Cách giải: \(y = - {x^4} + 2{x^2} + 2 \Rightarrow y' = - 4{x^3} + 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right.\)

Bảng xét dấu y’:

Tìm giá trị cực tiểu yCT của hàm số y = -x^4 + 2x^2 + 2 A. yCT = 2 B. yCT = 1 C. yCT = -2 (ảnh 1)

Hàm số đạt cực tiểu tại \(x = 0\), giá trị cực tiểu \({y_{CT}} = y\left( 0 \right) = 2\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình đa diện bên có bao nhiêu mặt?

Hình đa diện bên có bao nhiêu mặt A. 6 B. 10 C. 11 D. 12 (ảnh 1)

Xem đáp án » 20/02/2023 1,870

Câu 2:

Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?

Cho hàm số y = ln x có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây  (ảnh 1)

Xem đáp án » 20/02/2023 1,700

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.

Xem đáp án » 20/02/2023 1,637

Câu 4:

Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?

Xem đáp án » 20/02/2023 1,605

Câu 5:

Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?

Xem đáp án » 20/02/2023 1,178

Câu 6:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)

Xem đáp án » 20/02/2023 1,134

Câu 7:

Từ một tấm tôn hình chữ nhất có chiều dài và rộng là 60cm, 40cm. Người ta cắt đi 6 hình vuông cạnh \(x\left( {cm} \right)\) rồi gấp tấm tôn còn lại để được một cái hộp có nắp như hình vẽ dưới đây. Tìm x để hộp nhận được có thể tích lớn nhất.
 

Xem đáp án » 20/02/2023 1,132

Bình luận


Bình luận