Câu hỏi:

20/02/2023 524 Lưu

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a\sqrt 3 \), góc \(ASB = {60^0}\). Tính thể tích của khối nón đỉnh S có đáy là đường tròn ngoại tiếp tứ giác ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp: \({V_{n\'o n}} = \frac{1}{3}\pi {R^2}h\)

Cách giải:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a căn bậc hai 3, góc ASB = 60 độ (ảnh 1)

S.ABCD là chóp tứ giác đều \( \Rightarrow \) ABCD là hình vuông

\(BD = AB\sqrt 2 = a\sqrt 3 .\sqrt 2 = a\sqrt 6 \Rightarrow r = OB = \frac{{BD}}{2} = \frac{{a\sqrt 6 }}{2}\)

Tam giác SAB có: \(SA = AB,\,\,\,ASB = {60^0} \Rightarrow \Delta ASB\) đều \( \Rightarrow SA = SB = a\sqrt 3 \)

\( \Rightarrow SB = SD = AD = AB = a\sqrt 3 \)

\( \Rightarrow \Delta SBD = ABD\left( {c.c.c} \right) \Rightarrow SO = OA = OB = OD = \frac{{a\sqrt 6 }}{2}\)

Thể tích của khối nón đỉnh S có đáy là đường tròn ngoại tiếp tứ giác ABCD:

\(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi .O{A^2}.SO = \frac{1}{3}\pi .{\left( {\frac{{a\sqrt 6 }}{2}} \right)^3} = \frac{{\pi {a^3}\sqrt 6 }}{4}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Phương pháp:

Biến đổi, đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\)

Cách giải:

    \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\)

\( \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _{{2^2}}}\left( {{{2.5}^x}} \right) - 1 = m\)

\( \Leftrightarrow \frac{1}{2}{\log _2}\left( {{5^x} - 1} \right).1 + {\log _2}\left( {{5^x} - 1} \right) = m\)

\( \Leftrightarrow \log _2^2\left( {{5^x} - 1} \right) + {\log _2}\left( {{5^x} - 1} \right) - 2m = 0\)

Đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\), phương trình trở thành: \({t^2} + t = 2m = 0,\,\,t \ge 2 \Leftrightarrow {t^2} + t = 2m,\,\,t \ge 2\left( * \right)\)

Xét hàm số \(f\left( t \right) = {t^2} + t,\,\,t \ge 2\) có: \(f'\left( t \right) = 2t + 1 > 0,\,\,\,\forall t \ge 2 \Rightarrow \) Hàm số đồng biến trên khoảng \(\left[ {2; + \infty } \right)\)

Tìm tất cả các giá trị thực của tham số m để phương trình log2 (5^x - 1).log4 (2.5^x) - 2 = m (ảnh 1)

Để phương trình (*) có nghiệm thì \(2m \ge 6 \Leftrightarrow m \ge 3\)

Câu 2

Lời giải

Đáp án D

Phương pháp:

Dựa vào cách vẽ đồ thị hàm số các hàm có chứa trị tuyệt đối.

Cách giải:

Đồ thị hình 2 là của hàm số \(y = \left| {\ln x} \right|\) được dựng từ đồ thị ở Hình 1, bằng cách: giữ nguyên phần đồ thị nằm phía trên trục hoành, lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP