Câu hỏi:

20/02/2023 129

Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }}\)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = a \Rightarrow y = a\)là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \) thì \(x = a\) là TCĐ của đồ thị hàm số.

Cách giải:

TXĐ: \(D = R\)

\(\mathop {\lim }\limits_{x \to + \infty } \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{5 + \frac{{11}}{x}}}{{\sqrt {3 + \frac{{2017}}{{{x^2}}}} }} = \frac{5}{{\sqrt 3 }};\,\,\,\,\mathop {\lim }\limits_{x \to - \infty } \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }} = \mathop {\lim }\limits_{x \to - \infty } \frac{{5 + \frac{{11}}{x}}}{{ - \sqrt {3 + \frac{{2017}}{{{x^2}}}} }} = - \frac{5}{{\sqrt 3 }}\)

Đồ thị hàm số \(y = \frac{{5x + 1}}{{\sqrt {3{x^2} + 2017} }}\) có 2 đường tiệm cận là \(y = \frac{5}{{\sqrt 3 }},\,\,\,y = - \frac{5}{{\sqrt 3 }}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình đa diện bên có bao nhiêu mặt?

Hình đa diện bên có bao nhiêu mặt A. 6 B. 10 C. 11 D. 12 (ảnh 1)

Xem đáp án » 20/02/2023 1,940

Câu 2:

Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?

Cho hàm số y = ln x có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây  (ảnh 1)

Xem đáp án » 20/02/2023 1,894

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.

Xem đáp án » 20/02/2023 1,846

Câu 4:

Tìm tất cả các giá trị thực của tham số m để phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\) có nghiệm \(x \ge 1\)

Xem đáp án » 20/02/2023 1,777

Câu 5:

Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?

Xem đáp án » 20/02/2023 1,655

Câu 6:

Cho các số thực \(a,\,b,\,x > 0\)\(b,\,x \ne 1\) thỏa mãn \({\log _x}\frac{{a + 2b}}{3} = {\log _x}\sqrt a + {\log _x}\sqrt b \). Tính giá trị của biểu thức \(P = \left( {2{a^2} + 3ab + {b^2}} \right){\left( {a + 2b} \right)^{ - 2}}\) khi \(a > b\)

Xem đáp án » 20/02/2023 1,485

Câu 7:

Số lượng của một số loài vi khuẩn sau t (giờ) được tính xấp xỉ bởi đẳng thức \(Q = {Q_0}.{e^{0,195t}}\), trong đó \({Q_0}\) là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5000 con thì sau bao lâu có 100 000 con.

Xem đáp án » 20/02/2023 1,404