Câu hỏi:
20/02/2023 100Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)
Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = a \Rightarrow y = a\)là TCN của đồ thị hàm số.
* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)
Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \) thì \(x = a\) là TCĐ của đồ thị hàm số.
Cách giải:
TXĐ: \(D = R\)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{5 + \frac{{11}}{x}}}{{\sqrt {3 + \frac{{2017}}{{{x^2}}}} }} = \frac{5}{{\sqrt 3 }};\,\,\,\,\mathop {\lim }\limits_{x \to - \infty } \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }} = \mathop {\lim }\limits_{x \to - \infty } \frac{{5 + \frac{{11}}{x}}}{{ - \sqrt {3 + \frac{{2017}}{{{x^2}}}} }} = - \frac{5}{{\sqrt 3 }}\)
Đồ thị hàm số \(y = \frac{{5x + 1}}{{\sqrt {3{x^2} + 2017} }}\) có 2 đường tiệm cận là \(y = \frac{5}{{\sqrt 3 }},\,\,\,y = - \frac{5}{{\sqrt 3 }}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu 4:
Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?
Câu 5:
Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?
Câu 6:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)
Câu 7:
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).
về câu hỏi!