Câu hỏi:
20/02/2023 147Cho một hình lăng trụ đứng có đáy là tam giác đều. Thể tích của hình lăng trụ là . Để diện tích toàn phần của hình lăng trụ nhỏ nhất thì cạnh đáy của lăng trụ là bao nhiêu? V
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Thể tích hình lăng trụ \(V = Sh\)
Diện tích toàn phần của lăng trụ:
Cách giải:
Giả sử hình lăng trụ có đáy là tam giác đều cạnh a, có chiều cao h.
Diện tích đáy: \(S = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích \(V = \frac{{{a^2}\sqrt 3 }}{4}.h \Rightarrow h = \frac{{4V}}{{\sqrt 3 {a^2}}}\)
Diện tích toàn phần:
\({S_{tp}} = 3a.h + 2.\frac{{{a^2}\sqrt 3 }}{4} = 3a.\frac{{4V}}{{\sqrt 3 {a^2}}} + \frac{{{a^2}\sqrt 3 }}{2}\)
\( = \frac{{4\sqrt 3 V}}{a} + \frac{{{a^2}\sqrt 3 }}{2} = \frac{{2\sqrt 3 V}}{a} + \frac{{2\sqrt 3 V}}{a} + \frac{{{a^2}\sqrt 3 }}{2} \ge 3\sqrt[{}]{{\frac{{2\sqrt 3 V}}{a}.\frac{{2\sqrt 3 V}}{a}.\frac{{{a^2}\sqrt 3 }}{2}}}\)
\( = 3\sqrt 3 .\sqrt[3]{{2{V^2}}}\)
Dấu “=” xảy ra khi và chỉ khi \(\frac{{2\sqrt 3 V}}{a} = \frac{{{a^2}\sqrt 3 }}{2} \Rightarrow {a^3} = 4V \Leftrightarrow a = \sqrt[3]{{4V}}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu 4:
Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?
Câu 5:
Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?
Câu 6:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)
Câu 7:
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).
về câu hỏi!