Câu hỏi:

20/02/2023 196

Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên với đáy bằng \({45^0}\). Gọi M, N, P lần lượt là trung điểm của SA, SB, SC. Tính thể tích của khối tứ diện AMNP.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

- Lập tỉ lệ thể tích khối tứ diện AMNP với khối chóp S.ABCD

- Tính thể tích khối chóp S.ABCD

- Tính thể tích khối tứ diện AMNP .

Cách giải:

M là trung điểm của SA \( \Rightarrow {S_{AMP}} = \frac{1}{2}{S_{SAP}} \Rightarrow {V_{AMNP}} = \frac{1}{2}{V_{N.SMP}}\)

Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên với đáy bằng 45 độ C. Gọi M, N, P (ảnh 1)

N là trung điểm của SB \( \Rightarrow {V_{N.SMP}} = \frac{1}{2}{V_{S.ABP}}\)

P là trung điểm của CD \( \Rightarrow {S_{ABP}} = \frac{1}{2}{S_{ABCD}} \Rightarrow {V_{S.ABP}} = \frac{1}{2}{V_{S.ABCD}}\)

\( \Rightarrow {V_{AMNP}} = {\left( {\frac{1}{2}} \right)^3}.{V_{S.ABCD}} = \frac{{{V_{S.ABCD}}}}{8}\)

Ta có: \(\left\{ \begin{array}{l}OP \bot CD\\SO \bot CD\end{array} \right. \Rightarrow CD \bot \left( {SOP} \right) \Rightarrow \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = SPO = {45^0} \Rightarrow \Delta SOP\) vuông cân tại O

\( \Rightarrow SO = OP = \frac{a}{2}\)

Thể tích khối chóp S.ABCD: \({V_{S.ABCD}} = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.\frac{a}{2}.{a^2} = \frac{{{a^3}}}{6}\)

\( \Rightarrow {V_{AMNP}} = \frac{{{V_{S.ABCD}}}}{8} = \frac{{{a^3}}}{{48}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình đa diện bên có bao nhiêu mặt?

Hình đa diện bên có bao nhiêu mặt A. 6 B. 10 C. 11 D. 12 (ảnh 1)

Xem đáp án » 20/02/2023 1,844

Câu 2:

Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?

Cho hàm số y = ln x có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây  (ảnh 1)

Xem đáp án » 20/02/2023 1,662

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.

Xem đáp án » 20/02/2023 1,615

Câu 4:

Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?

Xem đáp án » 20/02/2023 1,585

Câu 5:

Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?

Xem đáp án » 20/02/2023 1,140

Câu 6:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)

Xem đáp án » 20/02/2023 1,099

Câu 7:

Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).

Xem đáp án » 20/02/2023 1,040

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store