Câu hỏi:

20/02/2023 272

Tìm tất cả các giá trị của tham số m để hàm số \(y = {\left( {\frac{2}{\pi }} \right)^{{x^3} + 3m{x^2} + 3mx + 10}}\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {0; + \infty } \right) \Rightarrow f'\left( x \right) \ge 0\,\,\forall x \in \left( {0; + \infty } \right)\)

Cách giải:

\(y = {\left( {\frac{2}{\pi }} \right)^{{x^3} + 3m{x^2} + 3mx + 10}}\)

\( \Rightarrow y' = \left( {3{x^2} + 6mx + 3m} \right).\ln \frac{2}{\pi }.{\left( {\frac{2}{\pi }} \right)^{{x^3} + 3m{x^2} + 3mx + 10}}\)

\( = 3\ln \frac{2}{\pi }.\left( {{x^2} + 2mx + m} \right).{\left( {\frac{2}{\pi }} \right)^{{x^3} + 3m{x^2} + 3mx + 10}}\)

Hàm số \(y = {\left( {\frac{2}{\pi }} \right)^{{x^3} + 3m{x^2} + 3mx + 10}}\)nghịch biến trên khoảng \(\left( {0; + \infty } \right) \Leftrightarrow y' \le 0,\,\,x \in \left( {0; + \infty } \right)\)

\(\ln \frac{2}{\pi } < 0,\,\,\,{\left( {\frac{2}{\pi }} \right)^{{x^3} + 3m{x^2} + 3mx + 10}} > 0,\,\,\,\forall x \Rightarrow {x^2} + 2mx + m \ge 0,\,\,\forall x \in \left( {0; + \infty } \right) \Leftrightarrow \left[ \begin{array}{l}\Delta ' \le 0\\\left\{ \begin{array}{l}\Delta ' > 0\\{x_1} < {x_2} \le 0\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' \le 0\\\left\{ \begin{array}{l}\Delta ' > 0\\S < 0\\P > 0\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - m \le 0\\\left\{ \begin{array}{l}{m^2} - m > 0\\ - 2m < 0\\m \ge 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 \le m \le 1\\\left\{ \begin{array}{l}\left[ \begin{array}{l}m >

1\\m < 0\end{array} \right.\\m > 0\\m \ge 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 \le m \le 1\\\left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m < 0\end{array} \right.\\m > 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 \le m \le 1\\m > 1\end{array} \right. \Leftrightarrow m \ge 0\)

Kết luận: \(m \in \left[ {0; + \infty } \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình đa diện bên có bao nhiêu mặt?

Hình đa diện bên có bao nhiêu mặt A. 6 B. 10 C. 11 D. 12 (ảnh 1)

Xem đáp án » 20/02/2023 1,870

Câu 2:

Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?

Cho hàm số y = ln x có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây  (ảnh 1)

Xem đáp án » 20/02/2023 1,700

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.

Xem đáp án » 20/02/2023 1,637

Câu 4:

Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?

Xem đáp án » 20/02/2023 1,605

Câu 5:

Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?

Xem đáp án » 20/02/2023 1,177

Câu 6:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)

Xem đáp án » 20/02/2023 1,133

Câu 7:

Từ một tấm tôn hình chữ nhất có chiều dài và rộng là 60cm, 40cm. Người ta cắt đi 6 hình vuông cạnh \(x\left( {cm} \right)\) rồi gấp tấm tôn còn lại để được một cái hộp có nắp như hình vẽ dưới đây. Tìm x để hộp nhận được có thể tích lớn nhất.
 

Xem đáp án » 20/02/2023 1,132

Bình luận


Bình luận