Câu hỏi:

20/02/2023 471

Xét các số thực a, b thỏa mãn \({\log _3}\left( {\frac{{1 - ab}}{{a + 2b}}} \right) = 3ab + a + 2b - 4\). Tìm giá trị nhỏ nhất của biểu thức \(P = a + b\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Sử dụng tính đơn điệu của hàm số để đánh giá nghiệm của phương trình.

Cách giải:

\({\log _3}\left( {\frac{{1 - ab}}{{a + 2b}}} \right) = 3ab + a + 2b - 4 \Leftrightarrow {\log _3}\left( {1 - ab} \right) - {\log _3}\left( {a + 2b} \right) = 3ab + a + 2b - 4\)

\( \Leftrightarrow {\log _3}3\left( {1 - ab} \right) + 3\left( {1 - ab} \right) = {\log _3}\left( {a + 2b + a + 2b} \right)\,\,\,\left( * \right)\)

Xét \(f\left( t \right) = {\log _3}t + t,\,\,t > 0\)\(f'\left( t \right) = \frac{1}{{t.\ln 3}} + 1 > 0,\,\,\forall t > 0 \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Phương trình \(\left( * \right) \Leftrightarrow f\left( {3\left( {1 - ab} \right)} \right) = f\left( {a + 2b} \right) \Leftrightarrow 3 - 2ab = a + 2b\)

\(P = a + b \Rightarrow a = P - b \Rightarrow 3 - 3\left( {P - b} \right)b = P - b + 2b \Leftrightarrow \left( {3{b^2} - b} \right)\left( {3P + 1 + 3 - P} \right) = 0\)

Để phương trình có nghiệm thì \(\Delta \ge 0 \Leftrightarrow {\left( {3P + 1} \right)^2} - 4.3.\left( {3 - P} \right) \ge 0 \Leftrightarrow 9{P^2} + 18P - 35 \ge 0\)

\( \Leftrightarrow \left[ \begin{array}{l}P \ge \frac{{ - 3 + 2\sqrt {11} }}{3}\\P \le \frac{{ - 3 - 2\sqrt {11} }}{3}\end{array} \right.\)

Do \(P = a + b \Rightarrow P > 0 \Rightarrow P \ge \frac{{ - 3 + 2\sqrt {11} }}{3}\)

Vậy \({P_{\min }} = \frac{{ - 3 + 2\sqrt {11} }}{3}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tìm tất cả các giá trị thực của tham số m để phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\) có nghiệm \(x \ge 1\)

Lời giải

Đáp án C

Phương pháp:

Biến đổi, đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\)

Cách giải:

    \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\)

\( \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _{{2^2}}}\left( {{{2.5}^x}} \right) - 1 = m\)

\( \Leftrightarrow \frac{1}{2}{\log _2}\left( {{5^x} - 1} \right).1 + {\log _2}\left( {{5^x} - 1} \right) = m\)

\( \Leftrightarrow \log _2^2\left( {{5^x} - 1} \right) + {\log _2}\left( {{5^x} - 1} \right) - 2m = 0\)

Đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\), phương trình trở thành: \({t^2} + t = 2m = 0,\,\,t \ge 2 \Leftrightarrow {t^2} + t = 2m,\,\,t \ge 2\left( * \right)\)

Xét hàm số \(f\left( t \right) = {t^2} + t,\,\,t \ge 2\) có: \(f'\left( t \right) = 2t + 1 > 0,\,\,\,\forall t \ge 2 \Rightarrow \) Hàm số đồng biến trên khoảng \(\left[ {2; + \infty } \right)\)

Tìm tất cả các giá trị thực của tham số m để phương trình log2 (5^x - 1).log4 (2.5^x) - 2 = m (ảnh 1)

Để phương trình (*) có nghiệm thì \(2m \ge 6 \Leftrightarrow m \ge 3\)

Câu 2

Hình đa diện bên có bao nhiêu mặt?

Hình đa diện bên có bao nhiêu mặt A. 6 B. 10 C. 11 D. 12 (ảnh 1)

Lời giải

Đáp án C

Phương pháp:

Đếm các mặt của đa diện.

Cách giải:

Hình đa diện bên có 11 mặt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?

Cho hàm số y = ln x có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây  (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay