Câu hỏi:

20/02/2023 435

Xét các số thực a, b thỏa mãn \({\log _3}\left( {\frac{{1 - ab}}{{a + 2b}}} \right) = 3ab + a + 2b - 4\). Tìm giá trị nhỏ nhất của biểu thức \(P = a + b\)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Sử dụng tính đơn điệu của hàm số để đánh giá nghiệm của phương trình.

Cách giải:

\({\log _3}\left( {\frac{{1 - ab}}{{a + 2b}}} \right) = 3ab + a + 2b - 4 \Leftrightarrow {\log _3}\left( {1 - ab} \right) - {\log _3}\left( {a + 2b} \right) = 3ab + a + 2b - 4\)

\( \Leftrightarrow {\log _3}3\left( {1 - ab} \right) + 3\left( {1 - ab} \right) = {\log _3}\left( {a + 2b + a + 2b} \right)\,\,\,\left( * \right)\)

Xét \(f\left( t \right) = {\log _3}t + t,\,\,t > 0\)\(f'\left( t \right) = \frac{1}{{t.\ln 3}} + 1 > 0,\,\,\forall t > 0 \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Phương trình \(\left( * \right) \Leftrightarrow f\left( {3\left( {1 - ab} \right)} \right) = f\left( {a + 2b} \right) \Leftrightarrow 3 - 2ab = a + 2b\)

\(P = a + b \Rightarrow a = P - b \Rightarrow 3 - 3\left( {P - b} \right)b = P - b + 2b \Leftrightarrow \left( {3{b^2} - b} \right)\left( {3P + 1 + 3 - P} \right) = 0\)

Để phương trình có nghiệm thì \(\Delta \ge 0 \Leftrightarrow {\left( {3P + 1} \right)^2} - 4.3.\left( {3 - P} \right) \ge 0 \Leftrightarrow 9{P^2} + 18P - 35 \ge 0\)

\( \Leftrightarrow \left[ \begin{array}{l}P \ge \frac{{ - 3 + 2\sqrt {11} }}{3}\\P \le \frac{{ - 3 - 2\sqrt {11} }}{3}\end{array} \right.\)

Do \(P = a + b \Rightarrow P > 0 \Rightarrow P \ge \frac{{ - 3 + 2\sqrt {11} }}{3}\)

Vậy \({P_{\min }} = \frac{{ - 3 + 2\sqrt {11} }}{3}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình đa diện bên có bao nhiêu mặt?

Hình đa diện bên có bao nhiêu mặt A. 6 B. 10 C. 11 D. 12 (ảnh 1)

Xem đáp án » 20/02/2023 1,937

Câu 2:

Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?

Cho hàm số y = ln x có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây  (ảnh 1)

Xem đáp án » 20/02/2023 1,894

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.

Xem đáp án » 20/02/2023 1,828

Câu 4:

Tìm tất cả các giá trị thực của tham số m để phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\) có nghiệm \(x \ge 1\)

Xem đáp án » 20/02/2023 1,773

Câu 5:

Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?

Xem đáp án » 20/02/2023 1,654

Câu 6:

Cho các số thực \(a,\,b,\,x > 0\)\(b,\,x \ne 1\) thỏa mãn \({\log _x}\frac{{a + 2b}}{3} = {\log _x}\sqrt a + {\log _x}\sqrt b \). Tính giá trị của biểu thức \(P = \left( {2{a^2} + 3ab + {b^2}} \right){\left( {a + 2b} \right)^{ - 2}}\) khi \(a > b\)

Xem đáp án » 20/02/2023 1,477

Câu 7:

Số lượng của một số loài vi khuẩn sau t (giờ) được tính xấp xỉ bởi đẳng thức \(Q = {Q_0}.{e^{0,195t}}\), trong đó \({Q_0}\) là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5000 con thì sau bao lâu có 100 000 con.

Xem đáp án » 20/02/2023 1,403