Câu hỏi:

20/02/2023 4,231

Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^2} + m + 1\mathord{\setbox0=\hbox{$\exists$}\rlap{\raise.2ex\hbox to\wd0{\hss/\hss}}\box0} \)có giá trị cực tiểu bằng \( - 1\). Tổng các phần tử thuộc \(S\)là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

TXĐ: \(D = \mathbb{R}\)

          \(\begin{array}{*{20}{l}}{y = {x^4} - 2m{x^2} + m + 1}\\{y' = 4{x^3} - 4mx}\\{y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} = m}\end{array}} \right.}\end{array}\)

TH1: \(m \le 0\): Khi đó: \({y_{ct}} = y\left( 0 \right) = {\rm{m}} + 1 = - 1 \Rightarrow m = - 2\)(thỏa mãn).

TH2: \(m > 0\): Khi đó: \({y_{ct}} = y\left( { \pm \sqrt m } \right) = - {m^2} + m + 1 = - 1 \Rightarrow {m^2} - m - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = - 1\;\left( l \right)}\\{m = 2\;\left( {t/m} \right)}\end{array}} \right.\)

Vậy \(S = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn D

Ta có \[f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right) \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = 2\end{array} \right.\].

Từ đó, ta có bảng biến thiên như sau:

Media VietJack

Dựa vào bảng biến thiên thì hàm số \[y = f\left( x \right)\] đồng biến trên \(\left( {1\,;\,2} \right)\).

Câu 2

Lời giải

Lời giải

Chọn D

Đồ thị hàm số \[y = \frac{{ax + b}}{{cx + d}}\] đi qua \(M\left( {0\,;\,\frac{b}{d}} \right)\), có đường tiệm cận đứng \(x = - \frac{d}{c}\), đường tiệm cận ngang \(y = \frac{a}{c}\).

Quan sát đồ thị thấy:

+ Giao điểm với trục tung nằm phía dưới \(Ox\)nên \(\frac{b}{d} < 0 \Leftrightarrow bd < 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận ngang nằm phía trên \(Ox\)nên \(\frac{a}{c} > 0 \Leftrightarrow ac > 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận đứng nằm bên trái \(Oy\)nên \( - \frac{d}{c} < 0 \Leftrightarrow cd > 0\).

Ta có: \(\left\{ \begin{array}{l}bd < 0\\cd > 0\end{array} \right. \Rightarrow bc < 0\)\( \Rightarrow \) Loại phương án

Kiểm chứng phương án D: \(\left\{ \begin{array}{l}ac > 0\\cd > 0\end{array} \right. \Rightarrow ad > 0\); \(\left\{ \begin{array}{l}ad > 0\\bd < 0\end{array} \right. \Rightarrow ab < 0\).

Lưu ý: Có thể sử dụng giao điểm của đồ thị với trục hoành nằm bên phải \(Oy\)nên \( - \frac{b}{a} > 0 \Leftrightarrow ab < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP