Câu hỏi:

20/02/2023 3,495 Lưu

Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng \(1\) mét. Khi đó hình thang đã cho có diện tích lớn nhất bằng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Media VietJack

Kẻ \(AH \bot CD,BK \bot CD \Rightarrow ABKH\) là hình chữ nhật \( \Rightarrow AB = HK = 1\left( m \right).\)

Đặt \(DH = x.\) Khi đó \(AH = \sqrt {1 - {x^2}} \left( {0 < x < 1} \right).\)

Vì \(ABCD\) là hình thang cân nên \(\Delta ADH = \Delta BCK\) (cạnh huyền – góc nhọn)

  \( \Rightarrow DH = CK = x \Rightarrow CD = DH + HK + CK = 2x + 1.\)

Ta có \({S_{ABCD}} = \frac{{\left( {AB + CD} \right).AH}}{2} = \frac{{\left( {1 + 2x + 1} \right)\sqrt {1 - {x^2}} }}{2} = \left( {x + 1} \right)\sqrt {1 - {x^2}} .\)

Xét hàm số \(f\left( x \right) = \left( {x + 1} \right)\sqrt {1 - {x^2}} \left( {0 < x < 1} \right),\) ta có

\(f'\left( x \right) = \sqrt {1 - {x^2}} - \frac{{2x\left( {x + 1} \right)}}{{2\sqrt {1 - {x^2}} }} = \frac{{ - 2{x^2} - x + 1}}{{\sqrt {1 - {x^2}} }},\) \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{1}{2}\left( n \right)}\\{x = - 1\left( l \right)}\end{array}} \right..\)

Bảng biến thiên:

Media VietJack

Dựa vào bảng biến thiên, ta thấy \(f\left( x \right) \le f\left( {\frac{1}{2}} \right) = \frac{{3\sqrt 3 }}{4}.\)

Vậy diện tích lớn nhất của hình thang \(ABCD\) là \(\frac{{3\sqrt 3 }}{4}\left( {{m^2}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn D

Ta có \[f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right) \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = 2\end{array} \right.\].

Từ đó, ta có bảng biến thiên như sau:

Media VietJack

Dựa vào bảng biến thiên thì hàm số \[y = f\left( x \right)\] đồng biến trên \(\left( {1\,;\,2} \right)\).

Câu 2

Lời giải

Lời giải

Chọn D

Đồ thị hàm số \[y = \frac{{ax + b}}{{cx + d}}\] đi qua \(M\left( {0\,;\,\frac{b}{d}} \right)\), có đường tiệm cận đứng \(x = - \frac{d}{c}\), đường tiệm cận ngang \(y = \frac{a}{c}\).

Quan sát đồ thị thấy:

+ Giao điểm với trục tung nằm phía dưới \(Ox\)nên \(\frac{b}{d} < 0 \Leftrightarrow bd < 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận ngang nằm phía trên \(Ox\)nên \(\frac{a}{c} > 0 \Leftrightarrow ac > 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận đứng nằm bên trái \(Oy\)nên \( - \frac{d}{c} < 0 \Leftrightarrow cd > 0\).

Ta có: \(\left\{ \begin{array}{l}bd < 0\\cd > 0\end{array} \right. \Rightarrow bc < 0\)\( \Rightarrow \) Loại phương án

Kiểm chứng phương án D: \(\left\{ \begin{array}{l}ac > 0\\cd > 0\end{array} \right. \Rightarrow ad > 0\); \(\left\{ \begin{array}{l}ad > 0\\bd < 0\end{array} \right. \Rightarrow ab < 0\).

Lưu ý: Có thể sử dụng giao điểm của đồ thị với trục hoành nằm bên phải \(Oy\)nên \( - \frac{b}{a} > 0 \Leftrightarrow ab < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP