Câu hỏi:

21/02/2023 474

Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và khoảng cách từ A đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 2 }}{2}\). Gọi M là điểm thuộc cạnh SD sao cho \(\overrightarrow {SM} = 3\overrightarrow {MD} \). Mặt phẳng \(\left( {ABM} \right)\) cắt cạnh SC tại điểm N. Thể tích khối đa diện MNABCD bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ảnh 1)

+) Xác định điểm N.

+) Phân chia và lắp ghép các khối đa diện.

Cách giải:

Kẻ \(AH \bot SB \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AH = \frac{{a\sqrt 2 }}{2} \Rightarrow \Delta SAB\) vuông cân tại A \( \Rightarrow SA = a\)

\( \Rightarrow {V_{S.ABCD}} = \frac{1}{3}.SA.{S_{ABCD}} = \frac{1}{3}.a.{a^2} = \frac{{{a^3}}}{3}\)

Kẻ \(MN//CD \Rightarrow \frac{{SM}}{{SD}} = \frac{{SN}}{{SC}} = \frac{3}{4}\)

Ta có: \({V_{S.ABD}} = {V_{S.BCD}} = \frac{1}{2}{V_{S.ABCD}}\)

\(\frac{{{V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ABM}} + {V_{S.BMN}}}}{{2{V_{S.ABD}}}} = \frac{1}{2}\left( {\frac{{{V_{S.ABM}}}}{{{V_{S.ABD}}}} + \frac{{{V_{S.BMN}}}}{{{V_{S.BCD}}}}} \right) = \frac{1}{2}\left( {\frac{{SM}}{{SD}} + \frac{{SM}}{{SD}}.\frac{{SN}}{{SC}}} \right) = \frac{1}{2}\left( {\frac{3}{4} + \frac{3}{4}.\frac{3}{4}} \right) = \frac{{21}}{{32}}\)

\( \Rightarrow \frac{{{V_{MNABCD}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ABCD}} - {V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = 1 - \frac{{{V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = 1 - \frac{{21}}{{32}} = \frac{{11}}{{32}}\)

Vậy \({V_{MNABCD}} = \frac{{11}}{{32}}{V_{S.ABCD}} = \frac{{11}}{{32}}.\frac{{{a^3}}}{3} = \frac{{11{a^3}}}{{96}}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

Lời giải

Đáp án D

Phương pháp:

Giải bất phương trình \(y' < 0\)

Cách giải:

Tập xác định \(D = R\)

\(y' = {x^3} - 4x + 3;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Bảng biến thiên:

Hàm số y = 1/3x^3 - 2x^2 + 3x - 1 nghịch biến trên khoảng nào trong các khaongr sau đây  (ảnh 1)

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên \(\left( {1;3} \right)\)

Lời giải

Đáp án C

Phương pháp:

Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số điểm mà qua đó \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(y = f\left( x \right) - 2x \Rightarrow y' = f'\left( x \right) - 2\)

Ta có: \(y' = 0 \Leftrightarrow f'\left( x \right) - 2 = 0 \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = 0\\x = {x_2}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f'(x) như hình vẽ sau (ảnh 1)

Câu 3

Trong các biểu thức sau, biểu thức nào không có nghĩa?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay