Câu hỏi:

21/02/2023 424

Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và khoảng cách từ A đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 2 }}{2}\). Gọi M là điểm thuộc cạnh SD sao cho \(\overrightarrow {SM} = 3\overrightarrow {MD} \). Mặt phẳng \(\left( {ABM} \right)\) cắt cạnh SC tại điểm N. Thể tích khối đa diện MNABCD bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ảnh 1)

+) Xác định điểm N.

+) Phân chia và lắp ghép các khối đa diện.

Cách giải:

Kẻ \(AH \bot SB \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AH = \frac{{a\sqrt 2 }}{2} \Rightarrow \Delta SAB\) vuông cân tại A \( \Rightarrow SA = a\)

\( \Rightarrow {V_{S.ABCD}} = \frac{1}{3}.SA.{S_{ABCD}} = \frac{1}{3}.a.{a^2} = \frac{{{a^3}}}{3}\)

Kẻ \(MN//CD \Rightarrow \frac{{SM}}{{SD}} = \frac{{SN}}{{SC}} = \frac{3}{4}\)

Ta có: \({V_{S.ABD}} = {V_{S.BCD}} = \frac{1}{2}{V_{S.ABCD}}\)

\(\frac{{{V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ABM}} + {V_{S.BMN}}}}{{2{V_{S.ABD}}}} = \frac{1}{2}\left( {\frac{{{V_{S.ABM}}}}{{{V_{S.ABD}}}} + \frac{{{V_{S.BMN}}}}{{{V_{S.BCD}}}}} \right) = \frac{1}{2}\left( {\frac{{SM}}{{SD}} + \frac{{SM}}{{SD}}.\frac{{SN}}{{SC}}} \right) = \frac{1}{2}\left( {\frac{3}{4} + \frac{3}{4}.\frac{3}{4}} \right) = \frac{{21}}{{32}}\)

\( \Rightarrow \frac{{{V_{MNABCD}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ABCD}} - {V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = 1 - \frac{{{V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = 1 - \frac{{21}}{{32}} = \frac{{11}}{{32}}\)

Vậy \({V_{MNABCD}} = \frac{{11}}{{32}}{V_{S.ABCD}} = \frac{{11}}{{32}}.\frac{{{a^3}}}{3} = \frac{{11{a^3}}}{{96}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

Xem đáp án » 21/02/2023 9,303

Câu 2:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên R. Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ sau. Số điểm cực trị của hàm số \(y = f\left( x \right) - 2x\)

Xem đáp án » 21/02/2023 5,190

Câu 3:

Trong các biểu thức sau, biểu thức nào không có nghĩa?

Xem đáp án » 21/02/2023 2,778

Câu 4:

Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm trên \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu đường tiệm cận?

Cho hàm số y = f(x) xác định và có đạo hàm trên R \ {+ 1 1|. Hàm số có bẳng biến thiên như (ảnh 1)

Xem đáp án » 21/02/2023 2,600

Câu 5:

Cho đồ thị của hàm số \(y = f\left( x \right)\) như hình vẽ dưới đây:

Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y = \left| {f\left( {x - 2017} \right) + m} \right|\) có 5 điểm cực trị. Tổng tất cả các giá trị của các phần tử của tập S bằng

Cho đồ thị của hàm số y = f(x) như hình vẽ dưới đây:  Gọi S là tập hợp các giá trị nguyên dương  (ảnh 1)

Xem đáp án » 21/02/2023 2,579

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?

Cho hàm số y = f(x) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số y = f'(x) như hình (ảnh 1)

Xem đáp án » 21/02/2023 2,453

Câu 7:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khoảng cách giữa hai đường thẳng AC và SB bằng:

Xem đáp án » 21/02/2023 1,836

Bình luận


Bình luận