Câu hỏi:

21/02/2023 286 Lưu

Cho hàm số \(y = \frac{1}{4}{x^4} - 2{x^2} + 2017\). Khẳng định nào sau đây là đúng?

A. Hàm số có một điểm cực tiểu và không có điểm cực đại.

B. Hàm số có một điểm cực đại và không có điểm cực tiểu.

C. Hàm số có một điểm cực đại và hai điểm cực tiểu.

D. Hàm số có một điểm cực tiểu và hai điểm cực đại.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

Giải phương trình \(y' = 0\) xác định các điểm cực trị của hàm số.

Cách giải:

\(y' = {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 2\end{array} \right.\)

Ta thấy, phương trình \(y' = 0\) có 3 nghiệm phân biệt và \(a = \frac{1}{4} > 0\) nên hàm số có ba cực trị trong đó có một điểm cực đại và hai điểm cực tiểu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - 1;3} \right)\)
B. \(\left( {1;4} \right)\)
C. \(\left( { - 3; - 1} \right)\)

D. \(\left( {1;3} \right)\)

Lời giải

Đáp án D

Phương pháp:

Giải bất phương trình \(y' < 0\)

Cách giải:

Tập xác định \(D = R\)

\(y' = {x^3} - 4x + 3;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Bảng biến thiên:

Hàm số y = 1/3x^3 - 2x^2 + 3x - 1 nghịch biến trên khoảng nào trong các khaongr sau đây  (ảnh 1)

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên \(\left( {1;3} \right)\)

Lời giải

Đáp án C

Phương pháp:

Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số điểm mà qua đó \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(y = f\left( x \right) - 2x \Rightarrow y' = f'\left( x \right) - 2\)

Ta có: \(y' = 0 \Leftrightarrow f'\left( x \right) - 2 = 0 \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = 0\\x = {x_2}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f'(x) như hình vẽ sau (ảnh 1)

Câu 4

A. \({\left( { - 4} \right)^{ - \frac{1}{3}}}\)
B. \({\left( { - \frac{3}{4}} \right)^0}\)
C. \({\left( { - 3} \right)^{ - 4}}\)

D. \({1^{ - \sqrt 2 }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP