Câu hỏi:
21/02/2023 715Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
TH1: \(1 - m = 0\), hàm số có dạng \(y = b{x^2} + c\) có 1 cực tiểu \( \Leftrightarrow b > 0\).
TH2: Hàm số có dạng \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có 1 cực tiểu và không có cực đại \( \Leftrightarrow a > 0\) và phương trình \(y' = 0\) có đúng 1 nghiệm.
Cách giải:
Tập xác định \(\mathbb{R}\).
Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1\), ta có \(y = 8{x^2} + 1\) có đồ thị là parabol, bề lõm quay lên trên nên hàm số chỉ có 1 cực tiểu và không có cực đại.
Trường hợp 2: \(m - 1 \ne 0 \Leftrightarrow m \ne 1\). Vì hàm số trùng phương nên để hàm số chỉ có cực tiểu mà không có cực đại thì \(m < 1\) và phương trình \(y' = 0\) có đúng một nghiệm.
Vậy ta có \(4\left( {1 - m} \right){x^3} + 4\left( {m + 3} \right)x = 0 \Leftrightarrow \left( {1 - m} \right){x^3} + \left( {m + 3} \right)x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\\left( {1 - m} \right){x^2} + m + 3 = 0\end{array} \right.\)
Do \(m < 1\) nên ta có \({x^2} = \frac{{m + 3}}{{m - 1}}\). Phương trình \({x^2} = \frac{{m + 3}}{{m - 1}}\) có một nghiệm \(x = 0\) hoặc vô nghiệm khi và chỉ khi \(\frac{{m + 3}}{{m - 1}} \le 0 \Leftrightarrow - 3 \le m < 1\) (thỏa điều kiện \(m < 1\))
Do đó không có nguyên dương thỏa mãn trong trường hợp này. m
Kết luận: Vậy \(m = 1\) thì hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên R. Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ sau. Số điểm cực trị của hàm số \(y = f\left( x \right) - 2x\) là
Câu 3:
Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm trên \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu đường tiệm cận?
Câu 4:
Cho đồ thị của hàm số \(y = f\left( x \right)\) như hình vẽ dưới đây:
Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y = \left| {f\left( {x - 2017} \right) + m} \right|\) có 5 điểm cực trị. Tổng tất cả các giá trị của các phần tử của tập S bằng
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khoảng cách giữa hai đường thẳng AC và SB bằng:
về câu hỏi!