Câu hỏi:
21/02/2023 227Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Số điểm cực trị của hàm số là số nghiệm không là nghiệm bội chẵn của phương trình \(y' = 0\) .
Cách giải:
Ta có \(y' = - 4{x^3} + 24{x^2} = - 4{x^2}\left( {x - 6} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 6\end{array} \right.\). Do \(x = 0\) là nghiệm kép nên hàm số chỉ có 1 cực trị \(x = 6\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Giải bất phương trình \(y' < 0\)
Cách giải:
Tập xác định \(D = R\)
\(y' = {x^3} - 4x + 3;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)
Bảng biến thiên:

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên \(\left( {1;3} \right)\)
Lời giải
Đáp án C
Phương pháp:
Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số điểm mà qua đó \(f'\left( x \right)\) đổi dấu.
Cách giải:
\(y = f\left( x \right) - 2x \Rightarrow y' = f'\left( x \right) - 2\)
Ta có: \(y' = 0 \Leftrightarrow f'\left( x \right) - 2 = 0 \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = 0\\x = {x_2}\end{array} \right.\)
Bảng biến thiên:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.