Câu hỏi:
21/02/2023 2,827
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, \(AB = 3a,\,\,BC = 4a\) và \(SA \bot \left( {ABC} \right)\). Góc giữa đường thẳng SC và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Gọi M là trung điểm của cạnh AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, \(AB = 3a,\,\,BC = 4a\) và \(SA \bot \left( {ABC} \right)\). Góc giữa đường thẳng SC và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Gọi M là trung điểm của cạnh AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:

Qua M dựng đường thẳng MN song song với AB, khi đó
\(d\left( {AB;SM} \right) = d\left( {AB;\left( {SMN} \right)} \right) = d\left( {A;\left( {SMN} \right)} \right)\)
Cách giải:
Do \(SA \bot \left( {ABC} \right)\) nên góc giữa SC và \(\left( {ABC} \right)\) là góc \(SCA = {60^0}\)
Vì \(\Delta ABC\) vuông tại B nên \(MN//AB \Rightarrow AB//\left( {SMN} \right)\)
\(d\left( {AB;SM} \right) = d\left( {AB;\left( {SMN} \right)} \right) = d\left( {A;\left( {SMN} \right)} \right)\)
Từ A kẻ đường thẳng song song với BC cắt MN tại D.
Do \(BC \bot AB \Rightarrow BC \bot MN \Rightarrow AD \bot MN\). Từ A kẻ AH vuông góc với SD.
Ta có \(\left\{ \begin{array}{l}MD \bot AD\\MD \bot SA\end{array} \right. \Rightarrow MD \bot \left( {SAD} \right) \Rightarrow MD \bot AH\)
Mà \(AH \bot SD \Rightarrow AH \bot \left( {SMD} \right)\) hay \(AH \bot \left( {SMN} \right) \Rightarrow d\left( {A;\left( {SMN} \right)} \right) = AH\)
Do \(AD = BN = \frac{1}{2}BC = 2a\)
Xét \(\Delta SAD\) có \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{75{a^2}}} + \frac{1}{{4{a^2}}} = \frac{{79}}{{300{a^2}}}\)
\( \Rightarrow d\left( {AB;SM} \right) = AH = \frac{{10\sqrt {237} a}}{{79}} = \frac{{10\sqrt 3 a}}{{\sqrt {79} }}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Giải bất phương trình \(y' < 0\)
Cách giải:
Tập xác định \(D = R\)
\(y' = {x^3} - 4x + 3;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)
Bảng biến thiên:

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên \(\left( {1;3} \right)\)
Lời giải
Đáp án C
Phương pháp:
Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số điểm mà qua đó \(f'\left( x \right)\) đổi dấu.
Cách giải:
\(y = f\left( x \right) - 2x \Rightarrow y' = f'\left( x \right) - 2\)
Ta có: \(y' = 0 \Leftrightarrow f'\left( x \right) - 2 = 0 \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = 0\\x = {x_2}\end{array} \right.\)
Bảng biến thiên:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.