Câu hỏi:
21/02/2023 290Nếu \({\left( {7 + 4\sqrt 3 } \right)^{a - 1}} < 7 - 4\sqrt 3 \) thì
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
\({a^m} < {a^n} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\m < n\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\m > n\end{array} \right.\end{array} \right.\)
Cách giải:
Vì \(\left( {7 - 4\sqrt 3 } \right)\left( {1 + 4\sqrt 3 } \right) = 1\) nên \(7 - 4\sqrt 3 = {\left( {7 + 4\sqrt 3 } \right)^{ - 1}}\)
Do đó: \({\left( {7 + 4\sqrt 3 } \right)^{a - 1}} < 7 - 4\sqrt 3 \Leftrightarrow {\left( {7 + 4\sqrt 3 } \right)^{a - 1}} < {\left( {7 + 4\sqrt 3 } \right)^{ - 1}} \Leftrightarrow a - 1 < - 1\,\,\left( {do\,\,7 + 4\sqrt 3 > 1} \right)\)
\( \Leftrightarrow a < 0\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên R. Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ sau. Số điểm cực trị của hàm số \(y = f\left( x \right) - 2x\) là
Câu 3:
Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm trên \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu đường tiệm cận?
Câu 4:
Cho đồ thị của hàm số \(y = f\left( x \right)\) như hình vẽ dưới đây:
Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y = \left| {f\left( {x - 2017} \right) + m} \right|\) có 5 điểm cực trị. Tổng tất cả các giá trị của các phần tử của tập S bằng
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khoảng cách giữa hai đường thẳng AC và SB bằng:
về câu hỏi!