Câu hỏi:

21/02/2023 216

Cho mặt cầu tâm O, bán kính \(R = 3\). Mặt phẳng \(\left( P \right)\) nằm cách tâm O một khoảng bằng 1 và cắt mặt cầu theo một đường tròn có chu vi bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Cho mặt cầu tâm O, bán kính R = 3. Mặt phẳng (P) nằm cách tâm O một khoảng bằng 1 và cắt mặt (ảnh 1)

Áp dụng định lí Pytago.

Cách giải:

Mặt phẳng \(\left( P \right)\) cắt mặt cầu tâm O theo một đường tròn tâm H và bán kính \(r = HA\)

Ta có \(OH = d\left( {O;\left( P \right)} \right) = 1;\,\,OA = R = 3\)

Áp dụng định lý Pytago cho tam giác vuông HOA ta có

\(r = HA = \sqrt {O{A^2} - O{H^2}} = \sqrt {9 - 1} = 2\sqrt 2 \)

Vậy chu vi đường tròn thiết diện là: \(2\pi r = 4\sqrt 2 \pi \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Giải bất phương trình \(y' < 0\)

Cách giải:

Tập xác định \(D = R\)

\(y' = {x^3} - 4x + 3;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Bảng biến thiên:

Hàm số y = 1/3x^3 - 2x^2 + 3x - 1 nghịch biến trên khoảng nào trong các khaongr sau đây  (ảnh 1)

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên \(\left( {1;3} \right)\)

Lời giải

Đáp án C

Phương pháp:

Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số điểm mà qua đó \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(y = f\left( x \right) - 2x \Rightarrow y' = f'\left( x \right) - 2\)

Ta có: \(y' = 0 \Leftrightarrow f'\left( x \right) - 2 = 0 \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = 0\\x = {x_2}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f'(x) như hình vẽ sau (ảnh 1)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP