Câu hỏi:

23/02/2023 6,408

Giao điểm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

\(\mathop {{\rm{lim}}}\limits_{x \to {2^ + }} y = \mathop {{\rm{lim}}}\limits_{x \to {2^ + }} \frac{{2x - 1}}{{x - 2}} = + \infty \) \(\mathop {{\rm{lim}}}\limits_{x \to {2^ - }} y = \mathop {{\rm{lim}}}\limits_{x \to {2^ - }} \frac{{2x - 1}}{{x - 2}} = - \infty \)

\( \Rightarrow \) Đường tiệm cận đứng \({d_1}:\;x = 2\).

                \(\mathop {{\rm{lim}}}\limits_{x \to \pm \;\infty } y = \mathop {{\rm{lim}}}\limits_{x \to \pm \;\infty } \frac{{2x - 1}}{{x - 2}} = 2\)

\( \Rightarrow \) Đường tiệm cận ngang \({d_2}:\;y = 2\).

Giao điểm của hai đường tiệm cận là \(J\left( {2;2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP