Câu hỏi:

24/02/2023 6,298 Lưu

Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\)và có bảng biến thiên như sau:

Media VietJack

Đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) - 5}}\)có bao nhiêu đường tiệm cận đứng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Dựa vào BBT, phương trình \[2f\left( x \right) - 5 = 0\]\[ \Leftrightarrow f\left( x \right) = \frac{5}{2}\]\[4\]nghiệm phân biệt thuộc các khoảng \[\left( { - \infty ; - 2} \right)\], \[\left( { - 2;1} \right)\], \[\left( {1;2} \right)\], \[\left( {2; + \infty } \right)\]nên đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) - 5}}\)\[4\]đường tiệm cận đứng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP