Câu hỏi:
23/02/2023 3,507Đồ thị sau đây là của hàm số \[y = {x^3} - 3x + 1\]. Với giá trị nào của m thì phương trình \({x^3} - 3x - m = 0\) có ba nghiệm phân biệt?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số \(y = {x^3} - 3x\) và đường thẳng \(y = m\)
Cách giải:
Ta có: \({x^3} - 3x - m = 0 \Leftrightarrow {x^3} - 3x = m\,\,\left( 1 \right)\)
Số nghiệm của phương trình (1) bằng số giao điểm của đồ thị hàm số \(y = {x^3} - 3x\) và đường thẳng \(y = m\)
Quan sát đồ thị hàm số, ta thấy: để đồ thị hàm số \(y = {x^3} - 3x\) cắt đường thẳng \(y = m\) tại 3 điểm phân biệt thì \( - 1 < m < 3\).
Vậy để phương trình đã cho có ba nghiệm phân biệt thì \( - 1 < m < 3\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:
Câu 2:
Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là
Câu 3:
Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là
Câu 5:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?
Câu 6:
Cho tứ diện ABCD, có \(AB = AC = AD = a,\,\,\,BAD = {90^0};\,\,DAC = {60^0};\,\,CAB = {120^0}\). Thể tích tứ diện ABCD là
về câu hỏi!