Câu hỏi:
24/02/2023 747
Trong không gian Oxyz, cho bốn điểm \(A\left( {1;0;0} \right),\,\,B\left( {0;2;0} \right),\,\,C\left( {0;0;3} \right),\,\,D\left( {1;2;3} \right)\). Phương trình mặt cầu đi qua bốn điểm A, B, C, D là:
Trong không gian Oxyz, cho bốn điểm \(A\left( {1;0;0} \right),\,\,B\left( {0;2;0} \right),\,\,C\left( {0;0;3} \right),\,\,D\left( {1;2;3} \right)\). Phương trình mặt cầu đi qua bốn điểm A, B, C, D là:
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:

Bốn điểm đã cho là 4 đỉnh của một hình hộp chữ nhật, nên tâm mặt cầu đi qua 4 điểm đó chính là tâm của hình hộp chữ nhật.
Cách giải:
Bốn điểm \[{\rm{A}}\left( {1;0;0} \right),\,\,B\left( {0;2;0} \right),\,\,C\left( {0;0;3} \right),\,\,D\left( {1;2;3} \right)\] là 4 đỉnh của một hình hộp chữ nhật, nên tâm mặt cầu đi qua 4 điểm đó chính là tâm của hình hộp chữ nhật và là trung điểm của OD.
\( \Rightarrow \) Tâm của hình hộp chữ nhật đó là: \(I\left( {\frac{1}{2};1;\frac{3}{2}} \right)\)
\(OD = \sqrt {{1^2} + {2^2} + {3^2}} = \sqrt {14} \Rightarrow \) Bán kính mặt cầu là \(R = \frac{{OD}}{2} = \frac{{\sqrt {14} }}{2}\)
Phương trình mặt cầu: \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {x - \frac{3}{2}} \right)^2} = {\left( {\frac{{\sqrt {14} }}{2}} \right)^2} \Leftrightarrow {x^2} + {y^2} + {z^2} - x - 2y - 3z = 0\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B

Phương pháp:
Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.
Cách giải:
Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A
\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)
Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C
Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.
Lời giải
Đáp án A
Phương pháp:
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
Cách giải:
Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)
Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.