Câu hỏi:
24/02/2023 1,350
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A, B, \(AB = BC = a,\,\,SA = AD = 2a\), gọi E là trung điểm của AD. Tính bán kính R của mặt cầu ngoại tiếp khối chóp S.CDE theo a.
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A, B, \(AB = BC = a,\,\,SA = AD = 2a\), gọi E là trung điểm của AD. Tính bán kính R của mặt cầu ngoại tiếp khối chóp S.CDE theo a.
Quảng cáo
Trả lời:
Đáp án B
Cách giải:

Dễ thấy ABCE là hình vuông \( \Rightarrow CEED\)
Gọi F là trung điểm của CD \( \Rightarrow \) F là tâm đường tròn ngoại tiếp tam giác ECD.
Qua F kẻ đường thẳng d song song với SE \( \Rightarrow \) là trục của tam giác ECD. d
Gọi G là trung điểm của SE, qua G kẻ đường song song với EF, đường thẳng này cắt d tại I \( \Rightarrow \) là tâm mặt cầu ngoại tiếp chóp S.CDE. I
Ta có \[{\rm{EF}} = \frac{1}{2}CD = \frac{1}{2}\sqrt {C{E^2} + D{E^2}} = \frac{1}{2}\sqrt {{a^2} + {a^2}} = \frac{{a\sqrt 2 }}{2}\]
\(SE = \sqrt {S{A^2} - A{E^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \Rightarrow EG = \frac{1}{2}SE = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác vuông IEG có \(R = IE = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B

Phương pháp:
Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.
Cách giải:
Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A
\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)
Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C
Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.
Lời giải
Đáp án A
Phương pháp:
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
Cách giải:
Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)
Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.