Câu hỏi:
24/02/2023 1,042Cho hình chóp S.ABCD có đáy là hình thang vuông tại A, B, \(AB = BC = a,\,\,SA = AD = 2a\), gọi E là trung điểm của AD. Tính bán kính R của mặt cầu ngoại tiếp khối chóp S.CDE theo a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Cách giải:
Dễ thấy ABCE là hình vuông \( \Rightarrow CEED\)
Gọi F là trung điểm của CD \( \Rightarrow \) F là tâm đường tròn ngoại tiếp tam giác ECD.
Qua F kẻ đường thẳng d song song với SE \( \Rightarrow \) là trục của tam giác ECD. d
Gọi G là trung điểm của SE, qua G kẻ đường song song với EF, đường thẳng này cắt d tại I \( \Rightarrow \) là tâm mặt cầu ngoại tiếp chóp S.CDE. I
Ta có \[{\rm{EF}} = \frac{1}{2}CD = \frac{1}{2}\sqrt {C{E^2} + D{E^2}} = \frac{1}{2}\sqrt {{a^2} + {a^2}} = \frac{{a\sqrt 2 }}{2}\]
\(SE = \sqrt {S{A^2} - A{E^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \Rightarrow EG = \frac{1}{2}SE = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác vuông IEG có \(R = IE = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Câu 2:
Tìm tập hợp tất cả các giá trị của tham só thực m để hàm số \(y = \frac{{mx - 1}}{{x - m}}\) đồng biến trên từng khoảng xác định:
Câu 3:
Trong không gian Oxyz, cho hai điểm \(A\left( {1;2;0} \right),\,\,\,B\left( {2; - 1;1} \right)\). Tìm điểm C có hoành độ dương trên trục Ox sao cho tam giác ABC vuông tại C.
Câu 4:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( { - {x^2} + 3x} \right)\)
Câu 6:
Hàm số nào trong bốn hàm số được liệt kê dưới đây không có cực trị?
Câu 7:
Đồ thị hàm số \(y = \frac{{\sqrt {9 - {x^2}} }}{{{x^2} - 6x + 8}}\) có bao nhiêu đường tiệm cận?
về câu hỏi!