Câu hỏi:
24/02/2023 245
Tìm tất cả các giá trị thực của tham số m để phương trình \({4^x} - {2^{x + 3}} + 3 = m\) có đúng 2 nghiệm thực phân biệt trong khoảng \(\left( {1;3} \right)\).
Tìm tất cả các giá trị thực của tham số m để phương trình \({4^x} - {2^{x + 3}} + 3 = m\) có đúng 2 nghiệm thực phân biệt trong khoảng \(\left( {1;3} \right)\).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Đặt \({2^x} = t,\,\,t \in \left( {2;8} \right)\). Khảo sát hàm số \(y = f\left( t \right) = {t^2} - 8t + 3\) với \(t \in \left( {2;8} \right)\), từ đó đưa ra kết luận.
Cách giải:
Ta có: \({4^x} - {2^{x + 3}} + 3 = m\,\,\,\left( 1 \right)\)
Đặt \({2^x} = t,\,\,t \in \left( {2;8} \right)\). Phương trình (1) trở thành \({t^2} - 8t + 3 = m\,\,\,\left( 2 \right)\), với \(t \in \left( {2;8} \right)\)
Nhận xét: Ứng với mỗi giá trị t tìm được thuộc khoảng \(\left( {2;8} \right)\) ta tìm được đúng một giá trị x thuộc khoảng \(\left( {1;3} \right)\), nên để phương trình (1) có đúng 2 nghiệm phân biệt trong khoảng \(\left( {1;3} \right)\) thì phương trình (2) có đúng 2 nghiệm phân biệt trong khoảng \(\left( {2;8} \right)\).
Xét hàm số \(y = f\left( t \right) = {t^2} - 8t + 3\) với \(t \in \left( {2;8} \right)\)
\(y' = f'\left( t \right) = 2t - 8,\,\,\,y' = 0 \Leftrightarrow t = 4\)
Bảng biến thiên:

Để phương trình (2) có 2 nghiệm phân biệt thuộc \(\left( {2;8} \right)\) thì \(m \in \left( { - 13;9} \right)\)
Kết luận: \( - 13 < m < - 9\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B

Phương pháp:
Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.
Cách giải:
Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A
\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)
Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C
Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.
Lời giải
Đáp án A
Phương pháp:
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
Cách giải:
Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)
Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.