Câu hỏi:

24/02/2023 1,474

Trong không gian Oxyz, cho hai điểm \(A\left( {1;2; - 2} \right),\,\,B\left( {2; - 1;2} \right)\). Tìm tọa độ điểm M trên mặt phẳng Oxy sao cho \(MA + MB\) đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Lấy \(M \in \left( {Oxy} \right) \Rightarrow MA + MB \ge AB \Rightarrow {\left( {MA + MB} \right)_{\min }} = AB\) khi và chỉ khi M là giao điểm của AB và mặt phẳng \(\left( {Oxy} \right)\)

Trong không gian Oxyz, cho hai điểm A(1; 2; -2), B(2; -1; 2). Tìm tọa độ điểm M trên mặt phẳng (ảnh 1)

Cách giải:

\(A\left( {1;2; - 2} \right),\,\,B\left( {2; - 1;2} \right) \Rightarrow \) A, B nằm khác phía so với mặt phẳng \(\left( {Oxy} \right)\,\,\left( {do\,\,{z_A} = - 2 < 0;\,\,{z_B} = 2 > 0} \right)\)

Lấy \(M \in \left( {Oxy} \right) \Rightarrow MA + MB \ge AB \Rightarrow {\left( {MA + MB} \right)_{\min }} = AB\) khi và chỉ khi M là giao điểm của AB và mặt phẳng \(\left( {Oxy} \right)\)

\(\overrightarrow {AB} \left( {1; - 3;4} \right) \Rightarrow \) Phương trình đường thẳng AB: \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 3t\\z = - 2 + 4t\end{array} \right.\)

Giả sử \(M\left( {1 + t;2 - 3t; - 2 + 4t} \right),\,\,do\,\,M \in \left( {Oxy} \right) \Rightarrow - 2 + 4t = 0 \Leftrightarrow t = \frac{1}{2} \Rightarrow M\left( {\frac{3}{2};\frac{1}{2};0} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây (ảnh 2)

Phương pháp:

Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.

Cách giải:

Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A

\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)

Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C

Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.

Lời giải

Đáp án A

Phương pháp:

Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)

Cách giải:

Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)

Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)

Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)

\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP