Câu hỏi:
24/02/2023 384Cho hàm số \(y = f\left( x \right) = {e^{\frac{1}{{x\left( {x + 1} \right)}}}}\). Tính giá trị biểu thức \(T = f\left( 1 \right).f\left( 2 \right).f\left( 3 \right)...f\left( {2017} \right).\sqrt[{2018}]{e}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Biến đổi: \({e^{\frac{1}{{x\left( {x + 1} \right)}}}} = {e^{\frac{1}{x} - \frac{1}{{x + 1}}}}\)
Cách giải:
Ta có: \({e^{\frac{1}{{x\left( {x + 1} \right)}}}} = {e^{\frac{1}{x} - \frac{1}{{x + 1}}}}\). Khi đó:
\(T = f\left( 1 \right).f\left( 2 \right).f\left( 3 \right)...f\left( {2017} \right).\sqrt[{2018}]{e}\)
\(T = {e^{1 - \frac{1}{2}}}.{e^{\frac{1}{2} - \frac{1}{3}}}.{e^{\frac{1}{3} - \frac{1}{4}}}...{e^{\frac{1}{{2017}} - \frac{1}{{2018}}}}.{e^{\frac{1}{{2018}}}}\)
\(T = {e^{1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2017}} - \frac{1}{{2018}} + \frac{1}{{2018}}}} = e\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Câu 2:
Tìm tập hợp tất cả các giá trị của tham só thực m để hàm số \(y = \frac{{mx - 1}}{{x - m}}\) đồng biến trên từng khoảng xác định:
Câu 3:
Trong không gian Oxyz, cho hai điểm \(A\left( {1;2;0} \right),\,\,\,B\left( {2; - 1;1} \right)\). Tìm điểm C có hoành độ dương trên trục Ox sao cho tam giác ABC vuông tại C.
Câu 4:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( { - {x^2} + 3x} \right)\)
Câu 6:
Hàm số nào trong bốn hàm số được liệt kê dưới đây không có cực trị?
Câu 7:
Đồ thị hàm số \(y = \frac{{\sqrt {9 - {x^2}} }}{{{x^2} - 6x + 8}}\) có bao nhiêu đường tiệm cận?
về câu hỏi!