Câu hỏi:
24/02/2023 907Cho bất phương trình \({2^{{x^2} + x}} + 2x \le {2^{3 - x}} - {x^2} + 3\) có tập nghiệm là \(\left[ {a;b} \right]\). Giá trị của \(T = 2a + b\) là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Sử dụng tính đơn điệu của hàm số.
Cách giải:
Ta có: \({2^{{x^2} + x}} + 2x \le {2^{3 - x}} - {x^2} + 3 \Leftrightarrow {2^{{x^2} + x}} + {x^2} + x \le {2^{3 - x}} + 3 - x\,\,\,\left( 1 \right)\)
Xét hàm số \(y = f\left( t \right) = {2^t} + t\) có \(y' = {2^t}.\ln 2 + 1 > 0,\,\,\forall t \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}\)
\(\left( 1 \right) \Leftrightarrow f\left( {{x^2} + x} \right) \le f\left( {3 - x} \right) \Leftrightarrow {x^2} + x \le 3 - x \Leftrightarrow {x^2} + 2x - 3 \le 0 \Leftrightarrow - 3 \le x \le 1\)
\( \Rightarrow a = - 3,\,\,b = 1 \Rightarrow T = 2a + b = 2.\left( { - 3} \right) + 1 = - 5\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Câu 2:
Tìm tập hợp tất cả các giá trị của tham só thực m để hàm số \(y = \frac{{mx - 1}}{{x - m}}\) đồng biến trên từng khoảng xác định:
Câu 3:
Trong không gian Oxyz, cho hai điểm \(A\left( {1;2;0} \right),\,\,\,B\left( {2; - 1;1} \right)\). Tìm điểm C có hoành độ dương trên trục Ox sao cho tam giác ABC vuông tại C.
Câu 4:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( { - {x^2} + 3x} \right)\)
Câu 6:
Hàm số nào trong bốn hàm số được liệt kê dưới đây không có cực trị?
Câu 7:
Đồ thị hàm số \(y = \frac{{\sqrt {9 - {x^2}} }}{{{x^2} - 6x + 8}}\) có bao nhiêu đường tiệm cận?
về câu hỏi!