Câu hỏi:
24/02/2023 469
Biết rằng hàm số \(y = f\left( x \right) = {x^3} + a{x^2} + bx + c\) đạt cực tiểu tại điểm \(x = 1\), giá trị cực tiểu bằng –3 và đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2. Tính giá trị của hàm số tại \(x = 2\).
Biết rằng hàm số \(y = f\left( x \right) = {x^3} + a{x^2} + bx + c\) đạt cực tiểu tại điểm \(x = 1\), giá trị cực tiểu bằng –3 và đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2. Tính giá trị của hàm số tại \(x = 2\).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
\(\left\{ \begin{array}{l}f'\left( 1 \right) = 0\\f\left( 1 \right) = 3\\f\left( 0 \right) = 2\end{array} \right.\)
Cách giải:
Cho \(x = 0 \Rightarrow y = c\), do đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2 nên \(c = 2\)
\(y = f\left( x \right) = {x^3} + a{x^2} + bx + 2 \Rightarrow y' = 3{x^2} + 2ax + b\)
Hàm số đạt cực tiểu tại \(x = 1 \to y'\left( 1 \right) = 0 \Leftrightarrow 3 + 2a + b = 0 \Leftrightarrow 2a + b = - 3\,\,\,\left( 1 \right)\)
Hàm số có giá trị cực tiểu bằng \( - 3 \Rightarrow y\left( 1 \right) = - 3 \Leftrightarrow 1 + a + b + 2 = - 3 \Leftrightarrow a + b = - 6\,\,\,\left( 2 \right)\)
Từ (1), (2) suy ra \(\left\{ \begin{array}{l}a = 3\\b = - 9\end{array} \right. \Rightarrow y = f\left( x \right) = {x^3} + 3{x^2} - 9x + 2 \Rightarrow f\left( 2 \right) = {2^3} + {3.2^2} - 9.2 + 2 = 4\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B

Phương pháp:
Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.
Cách giải:
Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A
\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)
Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C
Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.
Lời giải
Đáp án A
Phương pháp:
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
Cách giải:
Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)
Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.