Câu hỏi:
24/02/2023 1,221Tính thể tích V khối lập phương biết rằng khối cầu ngoại tiếp khối lập phương có thể tích là \(\frac{{32}}{3}\pi \)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
+) Thể tích khối cầu có bán kính R là: \(V = \frac{4}{3}\pi {R^3}\)
+) Thể tích khối lập phương có cạnh bằng a là: \(V = {a^3}\)
Giả sử khối lập phương ABCD.A’B’C’D’ có các cạnh đều bằng a.
Khi đó: \(AC' = \sqrt {A{B^2} + A{D^2} + AA{'^2}} = \sqrt 3 a \Rightarrow R = \frac{{AC'}}{2} = \frac{{a\sqrt 3 }}{2}\)
Thể tích khối cầu có bán kính R là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{a\sqrt 3 }}{2}} \right)^3} = \frac{{\sqrt 3 \pi {a^3}}}{2} = \frac{{32}}{3}\pi \Leftarrow a = \frac{4}{{\sqrt 3 }}\)
Thể tích khối lập phương: \(V = {a^3} = {\left( {\frac{4}{{\sqrt 3 }}} \right)^3} = \frac{{64}}{{3\sqrt 3 }} = \frac{\begin{array}{l}6\\64\sqrt 3 \end{array}}{9}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Câu 2:
Tìm tập hợp tất cả các giá trị của tham só thực m để hàm số \(y = \frac{{mx - 1}}{{x - m}}\) đồng biến trên từng khoảng xác định:
Câu 3:
Trong không gian Oxyz, cho hai điểm \(A\left( {1;2;0} \right),\,\,\,B\left( {2; - 1;1} \right)\). Tìm điểm C có hoành độ dương trên trục Ox sao cho tam giác ABC vuông tại C.
Câu 4:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( { - {x^2} + 3x} \right)\)
Câu 6:
Hàm số nào trong bốn hàm số được liệt kê dưới đây không có cực trị?
Câu 7:
Đồ thị hàm số \(y = \frac{{\sqrt {9 - {x^2}} }}{{{x^2} - 6x + 8}}\) có bao nhiêu đường tiệm cận?
về câu hỏi!