Câu hỏi:
24/02/2023 279
Cho hàm số \(y = {x^3} - 3{x^2} + 2\). Gọi A, B là 2 điểm thuộc đồ thị hàm số đã cho có hoành độ lần lượt là \({x_A},\,{x_B}\), tiếp tuyến của đồ thị hàm số tại A, B song song với nhau và đường thẳng AB tạo với 2 trục tọa độ một tam giác cân, đường thẳng AB có hệ số góc dương. Tính \({x_A}{x_B}\).
Cho hàm số \(y = {x^3} - 3{x^2} + 2\). Gọi A, B là 2 điểm thuộc đồ thị hàm số đã cho có hoành độ lần lượt là \({x_A},\,{x_B}\), tiếp tuyến của đồ thị hàm số tại A, B song song với nhau và đường thẳng AB tạo với 2 trục tọa độ một tam giác cân, đường thẳng AB có hệ số góc dương. Tính \({x_A}{x_B}\).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Tiếp tuyến của đồ thị hàm số tại A, B song song với nhau \( \Rightarrow y'\left( {{x_A}} \right) = y'\left( {{x_B}} \right)\)
Cách giải:
Đường thẳng AB tạo với 2 trục tọa độ một tam giác cân \( \Rightarrow \Delta OAB\) vuông cân tại O \( \Rightarrow \) Đường thẳng AB có hệ số góc \(k = \pm 1\)
Mà \(k > 0 \Rightarrow k = 1 \Rightarrow \) Phương trình đường thẳng AB có dạng: \(y = x + m\,\,\,\left( d \right)\)
\(y = {x^3} - 3{x^2} + 2 \Rightarrow y' = 3{x^2} - 6x\)
Tiếp tuyến của đồ thị hàm số tại A, B song song với nhau:
\( \Rightarrow y'\left( {{x_A}} \right) = y'\left( {{x_B}} \right) \Leftrightarrow 3x_A^2 - 6{x_A} = 3x_B^2 - 6{x_B}\)
\( \Leftrightarrow x_A^2 - 2{x_A} - x_B^2 + 2{x_A} = 0\)
\( \Leftrightarrow \left( {{x_A} - {x_B}} \right)\left( {{x_A} + {x_B} - 2} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{x_A} = {x_B}\left( L \right)\\{x_A} + {x_B} = 2\end{array} \right. \Leftrightarrow {x_A} + {x_B} = 2\)
\({y_A} + {y_B} = \left( {x_A^3 - 3x_A^2 + 2} \right) + \left( {x_B^3 - 3x_B^2 + 2} \right)\)
\( = \left( {x_A^3 + x_B^3} \right) - 3\left( {x_A^2 + x_B^2} \right) + 4\)
\( = {\left( {{x_A} + {x_B}} \right)^3} - 3.\left( {{x_A} + {x_B}} \right){x_A}{x_B} - 3\left( {{{\left( {{x_A} + {x_B}} \right)}^2} - 2{x_A}{x_B}} \right) + 4\)
\( = 8 - 6{x_A}{x_B} - 3\left( {4 - 2{x_A}{x_B}} \right) + 4 = 0\)
\( \Rightarrow \) AB có trung điểm \(I\left( {1;0} \right)\)
\(I \in d \Rightarrow 0 = 1 + m \Rightarrow m = - 1 \Rightarrow \left( d \right):y = x - 1\)
Xét phương trình hoành độ giao điểm của (d) và đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\)
\({x^3} - 3{x^2} + 2 = x - 1 \Leftrightarrow {x^3} - 3{x^2} - x + 3 = 0\)
\( \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 1\\x = 1\end{array} \right.\)
Mà \({x_A} + {x_B} = 2 \Rightarrow {x_A} = 3,\,\,\,{x_B} = - 1\) (giả sử \({x_A} > {x_B}\)) \( \Rightarrow {x_A}{x_B} = - 3\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B

Phương pháp:
Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.
Cách giải:
Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A
\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)
Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C
Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.
Lời giải
Đáp án A
Phương pháp:
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
Cách giải:
Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)
Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.