Câu hỏi:
24/02/2023 450Tiếp tuyến với đồ thị \(y = \frac{{2x - 1}}{{x - 2}}\) tại điểm có tung độ bằng 5 có hệ số góc k là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) có hệ số góc: \(k = f'\left( {{x_0}} \right)\)
Cách giải:
Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm.
Theo đề bài, ta có: \({y_0} = 5 \Rightarrow 5 = \frac{{2{x_0} - 1}}{{{x_0} - 2}} \Leftrightarrow 5{x_0} - 10 = 2{x_0} - 1 \Leftrightarrow {x_0} = 3\)
\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1.\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} \Rightarrow y'\left( 3 \right) = \frac{{ - 3}}{{{{\left( {3 - 2} \right)}^2}}} = - 3\)
Vậy, tiếp tuyến với đồ thị \(y = \frac{{2x - 1}}{{x - 2}}\) tại điểm có tung độ bằng 5 có hệ số góc \(k = - 3\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Câu 2:
Tìm tập hợp tất cả các giá trị của tham só thực m để hàm số \(y = \frac{{mx - 1}}{{x - m}}\) đồng biến trên từng khoảng xác định:
Câu 3:
Trong không gian Oxyz, cho hai điểm \(A\left( {1;2;0} \right),\,\,\,B\left( {2; - 1;1} \right)\). Tìm điểm C có hoành độ dương trên trục Ox sao cho tam giác ABC vuông tại C.
Câu 4:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( { - {x^2} + 3x} \right)\)
Câu 6:
Hàm số nào trong bốn hàm số được liệt kê dưới đây không có cực trị?
Câu 7:
Đồ thị hàm số \(y = \frac{{\sqrt {9 - {x^2}} }}{{{x^2} - 6x + 8}}\) có bao nhiêu đường tiệm cận?
về câu hỏi!