Câu hỏi:

24/02/2023 205

Tìm giá trị nhỏ nhất của hàm số \(y = x + 1 + \frac{4}{x}\) trên \(\left[ {1;3} \right]\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Phương pháp tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\)

Bước 1: Tính y’, giải phương trình \(y' = 0 \Rightarrow {x_i} \in \left[ {a;b} \right]\)

+) Bước 2: Tính các giá trị \(f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)\)

+) Bước 3: So sánh và kết luận:

\(\mathop {max}\limits_{\left[ {a;b} \right]} f\left( x \right) = max\left\{ {f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)} \right\};\,\,\,\mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)} \right\}\)

Cách giải:

\(y = x + 1 + \frac{4}{x} \Rightarrow y' = 1 - \frac{4}{{{x^2}}},\,\,\,y' = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2\left( L \right)\end{array} \right.\)

Ta có: \(f\left( 1 \right) = 6,\,\,\,f\left( 2 \right) = 5,\,\,\,f\left( 3 \right) = \frac{{16}}{3} \Rightarrow \mathop {\min }\limits_{x \in \left[ {1;3} \right]} y = 5\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây (ảnh 2)

Phương pháp:

Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.

Cách giải:

Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A

\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)

Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C

Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.

Lời giải

Đáp án A

Phương pháp:

Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)

Cách giải:

Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)

Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)

Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)

\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP