Câu hỏi:

26/02/2023 11,895

Hàm số \(f\left( x \right)\)có đạo hàm trên \(\mathbb{R}\)\(f'\left( x \right) > 0,\forall x \in \left( {0; + \infty } \right)\), biết \(f\left( 2 \right) = 1\). Khẳng định nào sau đây có thể xảy ra?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B
Ta có hàm số \(f\left( x \right)\)có đạo hàm trên \(\mathbb{R}\)\(f'\left( x \right) > 0,\forall x \in \left( {0; + \infty } \right)\) nên hàm số \(f\left( x \right)\)đồng biến trên \(\left( {0; + \infty } \right)\)
Lại có \(f\left( 2 \right) = 1\)\(3 > 2 \Rightarrow f\left( 3 \right) > f\left( 2 \right)\) nên \(A\) sai
\(1 < 2 \Rightarrow f\left( 1 \right) < f\left( 2 \right)\) nên \(C\) sai
\(2019 < 2020 \Rightarrow f\left( {2019} \right) < f\left( {2020} \right)\) nên \(D\) sai
Xét \(B\):\(f\left( 2 \right) + f\left( 3 \right) = 4 \Rightarrow f(3) = 4 - f\left( 2 \right) = 4 - 1 = 3 > f\left( 2 \right)\)
Vậy \(B\) có thể xảy ra

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\).

Xem đáp án » 26/02/2023 58,889

Câu 2:

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2;\,3} \right]\) và có đồ thị như hình vẽ dưới đây . Gọi \(m,\,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhẩt của hàm số trên đoạn \(\left[ { - 2;\,3} \right]\). Giá trị của \(m.M\) bằng bao nhiêu?
Media VietJack

Xem đáp án » 26/02/2023 13,236

Câu 3:

Cho hàm số \(f\left( x \right)\)xác định và liên tục trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)có bảng biến thiên như sau:

Media VietJack

Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right)}}\)có tất cả bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Xem đáp án » 26/02/2023 12,950

Câu 4:

Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây
Media VietJack

Xem đáp án » 26/02/2023 10,781

Câu 5:

Cho hàm số \[y = \frac{{mx - {m^2} - 2}}{{ - x + 1}}\] (\[m\] là tham số thực) thỏa mãn \[\mathop {\max }\limits_{\left[ { - 4; - 2} \right]} y = \frac{{ - 1}}{3}\]. Mệnh đề nào sau dưới đây đúng?

Xem đáp án » 26/02/2023 9,428

Câu 6:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số\(y = \frac{1}{3}{x^3} + 2{x^2} - \left( {2m - 3} \right)x + 4\) đồng biến trên \(\left( { - 1; + \infty } \right)\).

Xem đáp án » 26/02/2023 8,929

Bình luận


Bình luận