Câu hỏi:

26/02/2023 1,682 Lưu

Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^2} + \frac{2}{x}\) trên đoạn \(\left[ {\frac{1}{2}\,;\,2} \right]\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A
\(f'\left( x \right) = 2x - \frac{2}{{{x^2}}}\).
\(f'\left( x \right) = 0 \Leftrightarrow x = 1 \in \left[ {\frac{1}{2}\,;\,2} \right]\).
Ta có: \(f\left( {\frac{1}{2}} \right) = \frac{{17}}{4}\), \(f\left( 1 \right) = 3\), \(f\left( 2 \right) = 5\)
\( \Rightarrow \left\{ \begin{array}{l}m = \mathop {\min }\limits_{\left[ {\frac{1}{2}\,;\,2} \right]} f\left( x \right) = 3\\M = \mathop {Max}\limits_{\left[ {\frac{1}{2}\,;\,2} \right]} f\left( x \right) = 5\end{array} \right. \Rightarrow m + M = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Chọn D
Từ đồ thị ta có hàm bậc \(4\) trùng phương \(y = a{x^4} + b{x^2} + c.\)
Từ đồ thị ta có \(a < 0\) nên loại C
Từ đồ thị ta có \(x = 0 \Rightarrow y = 1\) nên loại B
Từ đồ thị ta có \(x = 1 \Rightarrow y = 2\) nên loại D

Lời giải

Lời giải
Chọn B
Xét hàm số \(y = \frac{{mx - 3}}{{x - 4m}}\).
Tập xác định \(D = \mathbb{R}\backslash \left\{ {4m} \right\}\).
Ta có \(\mathop {{\rm{lim}}}\limits_{x \to - \infty } y = \mathop {{\rm{lim}}}\limits_{x \to + \infty } y = m\).
Do đó đồ thị hàm số có tiệm cận ngang là đường thẳng \(d:y = m\).
\(A\left( { - 2;4} \right) \in d\) nên \(m = 4\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP