Lời giải
Chọn A
Ta có \(BH = \frac{1}{3}AH\) suy ra \(B\) là trọng tâm của tam giác \(SAT\).
Do đó, \(\frac{{BQ}}{{BU}} = \frac{{BH}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{BQ}}{{BS}} = \frac{1}{4}\). Tương tự ta có, \(\frac{{DR}}{{SD}} = \frac{1}{4}\).
\(\frac{{{V_{S.PRN}}}}{{{V_{S.ADN}}}} = \frac{{SP}}{{SA}}.\frac{{SR}}{{SD}} = \frac{1}{2}.\frac{3}{4} = \frac{3}{8} \Rightarrow \frac{{{V_{S.PRN}}}}{{{V_{S.ABCD}}}} = \frac{3}{{32}}\).
Tương tự, ta có \(\frac{{{V_{S.PQM}}}}{{{V_{S.ABCD}}}} = \frac{3}{{32}}\).
Lại có \(\frac{{{V_{S.PMN}}}}{{{V_{S.AMN}}}} = \frac{{SP}}{{SA}} = \frac{1}{2} \Rightarrow \frac{{{V_{S.PMN}}}}{{{V_{S.ABCD}}}} = \frac{3}{{16}}\).
\(\frac{{{V_{S.MNC}}}}{{{V_{S.ABCD}}}} = \frac{1}{8}\).
Suy ra thể tích khối đa diện chứa đỉnh \(S\) là \({V_1} = \left( {\frac{3}{{32}} + \frac{3}{{32}} + \frac{3}{{16}} + \frac{1}{8}} \right){V_{SABCD}} = \frac{1}{2}{V_{SABCD}}\).
Vậy \(\frac{{{V_1}}}{{{V_2}}} = 1\).
về câu hỏi!