Câu hỏi:

26/02/2023 139

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M\), \(N\) \(P\) lần lượt là trung điểm của các đoạn \(BC\), \(CD\) \(SA\). Mặt phẳng \(\left( {MNP} \right)\) chia khối chóp thành hai phần có thể tích lần lượt là \({V_1}\)\({V_2}\). Biết rằng \({V_1} \le {V_2}\), tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A

Media VietJackMedia VietJack

Ta có \(BH = \frac{1}{3}AH\) suy ra \(B\) là trọng tâm của tam giác \(SAT\).
Do đó, \(\frac{{BQ}}{{BU}} = \frac{{BH}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{BQ}}{{BS}} = \frac{1}{4}\). Tương tự ta có, \(\frac{{DR}}{{SD}} = \frac{1}{4}\).
\(\frac{{{V_{S.PRN}}}}{{{V_{S.ADN}}}} = \frac{{SP}}{{SA}}.\frac{{SR}}{{SD}} = \frac{1}{2}.\frac{3}{4} = \frac{3}{8} \Rightarrow \frac{{{V_{S.PRN}}}}{{{V_{S.ABCD}}}} = \frac{3}{{32}}\).
Tương tự, ta có \(\frac{{{V_{S.PQM}}}}{{{V_{S.ABCD}}}} = \frac{3}{{32}}\).
Lại có \(\frac{{{V_{S.PMN}}}}{{{V_{S.AMN}}}} = \frac{{SP}}{{SA}} = \frac{1}{2} \Rightarrow \frac{{{V_{S.PMN}}}}{{{V_{S.ABCD}}}} = \frac{3}{{16}}\).
\(\frac{{{V_{S.MNC}}}}{{{V_{S.ABCD}}}} = \frac{1}{8}\).
Suy ra thể tích khối đa diện chứa đỉnh \(S\)\({V_1} = \left( {\frac{3}{{32}} + \frac{3}{{32}} + \frac{3}{{16}} + \frac{1}{8}} \right){V_{SABCD}} = \frac{1}{2}{V_{SABCD}}\).
Vậy \(\frac{{{V_1}}}{{{V_2}}} = 1\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình bên là đồ thị của hàm số nào?
Media VietJack

Xem đáp án » 26/02/2023 10,656

Câu 2:

Với giá trị nào của \(m\) thì đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{mx - 3}}{{x - 4m}}\) đi qua điểm \(A\left( { - 2;4} \right)\)?

Xem đáp án » 26/02/2023 8,523

Câu 3:

Hàm số nào sau đây có bảng biến thiên như hình vẽ
Media VietJack

Xem đáp án » 26/02/2023 6,987

Câu 4:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = m{x^3} - 3m{x^2} + 3\left( {3m - 1} \right)x + 2m - 3\) nghịch biến trên \(\mathbb{R}\) là

Xem đáp án » 26/02/2023 4,870

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Media VietJack

Xem đáp án » 26/02/2023 3,283

Câu 6:

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau

Media VietJack

Số các đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{2019}}{{f\left( x \right)}}\)là

Xem đáp án » 26/02/2023 2,994

Câu 7:

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Media VietJack

Số nghiệm thực của phương trình \(2f\left( x \right) - 2 = 0\)

Xem đáp án » 26/02/2023 2,885
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay