Câu hỏi:

26/02/2023 311

Cho hàm số \(y = f\left( x \right) = {x^3} - 6{x^2} + 9x = 1\). Phương trình \(f\left[ {f\left( {f\left( x \right) - 1} \right) - 2} \right] = 1\) có tất cả bao nhiêu nghiệm thực?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Ta có \(f'\left( x \right) = 3x - 12x + 9;\) \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\end{array}} \right..\)

Đồ thị:

Media VietJack

Từ đồ thị suy ra \(f\left( x \right) = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 3}\end{array}} \right..\)

Suy ra \(f\left[ {f\left( {f\left( x \right) - 1} \right) - 2} \right] = 1\left( * \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( {f\left( x \right) - 1} \right) - 2 = 0}\\{f\left( {f\left( x \right) - 1} \right) - 2 = 3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( {f\left( x \right) - 1} \right) = 2}\\{f\left( {f\left( x \right) - 1} \right) = 5}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( x \right) - 1 = a\left( {0 < a < 1} \right)}\\{f\left( x \right) - 1 = b\left( {1 < b < 3} \right)}\\{f\left( x \right) - 1 = c\left( {3 < c < 4} \right)}\\{f\left( x \right) - 1 = 1}\\{f\left( x \right) - 1 = 4}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( x \right) = 1 + a}\\{f\left( x \right) = 1 + b}\\{f\left( x \right) = 1 + c}\\{f\left( x \right) = 2}\\{f\left( x \right) = 5.}\end{array}} \right.\)

Khi đó, số nghiệm của phương trình (*) là số nghiệm của 5 trường hợp trên.

Số nghiệm của phương trình \(f\left( x \right) = 1 + a\) chính là số giao điểm của đường thẳng \(y = 1 + a\) với đồ thị hàm số \(f\left( x \right).\) Mà \(0 < a < 1\) nên dựa vào đồ thị ta có 3 nghiệm.

Tương tự phương trình \(f\left( x \right) = 1 + b\left( {1 < b < 3} \right)\) cũng có 3 nghiệm.

Với phương trình \(f\left( x \right) = 1 + c\left( {3 < c < 4} \right)\) có 3 nghiệm.

Với phương trình \(f\left( x \right) = 2\) có 3 nghiệm.

Với phương trình \(f\left( x \right) = 5\) có 2 nghiệm.

Vậy tổng số nghiệm là \(3 + 3 + 3 + 3 + 2 = 14\) nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình bên là đồ thị của hàm số nào?
Media VietJack

Xem đáp án » 26/02/2023 10,374

Câu 2:

Với giá trị nào của \(m\) thì đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{mx - 3}}{{x - 4m}}\) đi qua điểm \(A\left( { - 2;4} \right)\)?

Xem đáp án » 26/02/2023 8,321

Câu 3:

Hàm số nào sau đây có bảng biến thiên như hình vẽ
Media VietJack

Xem đáp án » 26/02/2023 6,495

Câu 4:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = m{x^3} - 3m{x^2} + 3\left( {3m - 1} \right)x + 2m - 3\) nghịch biến trên \(\mathbb{R}\) là

Xem đáp án » 26/02/2023 4,551

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Media VietJack

Xem đáp án » 26/02/2023 3,138

Câu 6:

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau

Media VietJack

Số các đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{2019}}{{f\left( x \right)}}\)là

Xem đáp án » 26/02/2023 2,746

Câu 7:

Đồ thị hàm số \(y = \frac{{ax - 1}}{{cx + d}}\) (\(a\), \(c\), \(d\): hằng số thực ) như hình vẽ.

Media VietJack

Khẳng định nào đúng

Xem đáp án » 26/02/2023 2,514

Bình luận


Bình luận