Câu hỏi:

26/02/2023 383 Lưu

Cho hàm số \(y = f\left( x \right) = {x^3} - 6{x^2} + 9x = 1\). Phương trình \(f\left[ {f\left( {f\left( x \right) - 1} \right) - 2} \right] = 1\) có tất cả bao nhiêu nghiệm thực?

A. 9.
B. 14.
C. 12.
D. 27.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn B

Ta có \(f'\left( x \right) = 3x - 12x + 9;\) \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\end{array}} \right..\)

Đồ thị:

Media VietJack

Từ đồ thị suy ra \(f\left( x \right) = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 3}\end{array}} \right..\)

Suy ra \(f\left[ {f\left( {f\left( x \right) - 1} \right) - 2} \right] = 1\left( * \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( {f\left( x \right) - 1} \right) - 2 = 0}\\{f\left( {f\left( x \right) - 1} \right) - 2 = 3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( {f\left( x \right) - 1} \right) = 2}\\{f\left( {f\left( x \right) - 1} \right) = 5}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( x \right) - 1 = a\left( {0 < a < 1} \right)}\\{f\left( x \right) - 1 = b\left( {1 < b < 3} \right)}\\{f\left( x \right) - 1 = c\left( {3 < c < 4} \right)}\\{f\left( x \right) - 1 = 1}\\{f\left( x \right) - 1 = 4}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( x \right) = 1 + a}\\{f\left( x \right) = 1 + b}\\{f\left( x \right) = 1 + c}\\{f\left( x \right) = 2}\\{f\left( x \right) = 5.}\end{array}} \right.\)

Khi đó, số nghiệm của phương trình (*) là số nghiệm của 5 trường hợp trên.

Số nghiệm của phương trình \(f\left( x \right) = 1 + a\) chính là số giao điểm của đường thẳng \(y = 1 + a\) với đồ thị hàm số \(f\left( x \right).\) Mà \(0 < a < 1\) nên dựa vào đồ thị ta có 3 nghiệm.

Tương tự phương trình \(f\left( x \right) = 1 + b\left( {1 < b < 3} \right)\) cũng có 3 nghiệm.

Với phương trình \(f\left( x \right) = 1 + c\left( {3 < c < 4} \right)\) có 3 nghiệm.

Với phương trình \(f\left( x \right) = 2\) có 3 nghiệm.

Với phương trình \(f\left( x \right) = 5\) có 2 nghiệm.

Vậy tổng số nghiệm là \(3 + 3 + 3 + 3 + 2 = 14\) nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = - {x^4} + 3{x^2} + 1\).
B. \(y = - {x^4} + 2{x^2}\).
C. \(y = {x^4} + 3{x^2} - 2\).
D. \(y = - {x^4} + 2{x^2} + 1\).

Lời giải

Lời giải
Chọn D
Từ đồ thị ta có hàm bậc \(4\) trùng phương \(y = a{x^4} + b{x^2} + c.\)
Từ đồ thị ta có \(a < 0\) nên loại C
Từ đồ thị ta có \(x = 0 \Rightarrow y = 1\) nên loại B
Từ đồ thị ta có \(x = 1 \Rightarrow y = 2\) nên loại D

Lời giải

Lời giải
Chọn B
Xét hàm số \(y = \frac{{mx - 3}}{{x - 4m}}\).
Tập xác định \(D = \mathbb{R}\backslash \left\{ {4m} \right\}\).
Ta có \(\mathop {{\rm{lim}}}\limits_{x \to - \infty } y = \mathop {{\rm{lim}}}\limits_{x \to + \infty } y = m\).
Do đó đồ thị hàm số có tiệm cận ngang là đường thẳng \(d:y = m\).
\(A\left( { - 2;4} \right) \in d\) nên \(m = 4\).

Câu 3

A. \[y = {x^3} - 3{x^2} - 2\].
B. \[y = - {x^3} + 3{x^2} - 1\].
C. \[y = {x^3} - 3{x^2} + 2\].
D. \[y = {x^3} + 3{x^2} - 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.  \(\left( {0; + \infty } \right)\)
B.  \(\left( { - \infty ;0} \right]\)
C.  \(\emptyset \)
D.  \(\left[ {0; + \infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - 1\;;\;1} \right)\).
B. \(\left( {0\;;\; + \infty } \right)\).
C. \(\left( { - \infty \;;\; + \infty } \right)\).
D. \(\left( { - \infty \;;\; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP