Câu hỏi:

26/02/2023 300

Cho hàm số \(y = f\left( x \right) = {x^3} - 6{x^2} + 9x = 1\). Phương trình \(f\left[ {f\left( {f\left( x \right) - 1} \right) - 2} \right] = 1\) có tất cả bao nhiêu nghiệm thực?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Ta có \(f'\left( x \right) = 3x - 12x + 9;\) \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\end{array}} \right..\)

Đồ thị:

Media VietJack

Từ đồ thị suy ra \(f\left( x \right) = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 3}\end{array}} \right..\)

Suy ra \(f\left[ {f\left( {f\left( x \right) - 1} \right) - 2} \right] = 1\left( * \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( {f\left( x \right) - 1} \right) - 2 = 0}\\{f\left( {f\left( x \right) - 1} \right) - 2 = 3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( {f\left( x \right) - 1} \right) = 2}\\{f\left( {f\left( x \right) - 1} \right) = 5}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( x \right) - 1 = a\left( {0 < a < 1} \right)}\\{f\left( x \right) - 1 = b\left( {1 < b < 3} \right)}\\{f\left( x \right) - 1 = c\left( {3 < c < 4} \right)}\\{f\left( x \right) - 1 = 1}\\{f\left( x \right) - 1 = 4}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( x \right) = 1 + a}\\{f\left( x \right) = 1 + b}\\{f\left( x \right) = 1 + c}\\{f\left( x \right) = 2}\\{f\left( x \right) = 5.}\end{array}} \right.\)

Khi đó, số nghiệm của phương trình (*) là số nghiệm của 5 trường hợp trên.

Số nghiệm của phương trình \(f\left( x \right) = 1 + a\) chính là số giao điểm của đường thẳng \(y = 1 + a\) với đồ thị hàm số \(f\left( x \right).\) Mà \(0 < a < 1\) nên dựa vào đồ thị ta có 3 nghiệm.

Tương tự phương trình \(f\left( x \right) = 1 + b\left( {1 < b < 3} \right)\) cũng có 3 nghiệm.

Với phương trình \(f\left( x \right) = 1 + c\left( {3 < c < 4} \right)\) có 3 nghiệm.

Với phương trình \(f\left( x \right) = 2\) có 3 nghiệm.

Với phương trình \(f\left( x \right) = 5\) có 2 nghiệm.

Vậy tổng số nghiệm là \(3 + 3 + 3 + 3 + 2 = 14\) nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình bên là đồ thị của hàm số nào?
Media VietJack

Xem đáp án » 26/02/2023 10,093

Câu 2:

Với giá trị nào của \(m\) thì đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{mx - 3}}{{x - 4m}}\) đi qua điểm \(A\left( { - 2;4} \right)\)?

Xem đáp án » 26/02/2023 7,953

Câu 3:

Hàm số nào sau đây có bảng biến thiên như hình vẽ
Media VietJack

Xem đáp án » 26/02/2023 6,230

Câu 4:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = m{x^3} - 3m{x^2} + 3\left( {3m - 1} \right)x + 2m - 3\) nghịch biến trên \(\mathbb{R}\) là

Xem đáp án » 26/02/2023 4,429

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Media VietJack

Xem đáp án » 26/02/2023 3,072

Câu 6:

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau

Media VietJack

Số các đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{2019}}{{f\left( x \right)}}\)là

Xem đáp án » 26/02/2023 2,676

Câu 7:

Các đường tiệm cận đứng và ngang của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\)là

Xem đáp án » 26/02/2023 2,246

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL