Câu hỏi:

28/02/2023 5,552

Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f'(x) như hình vẽ bên dưới.

Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f'(x) như hình vẽ bên dưới.  Hàm số g(x)=f(x)= -x^3/3+x^2-x+2 có bao nhiêu điểm cực đại? (ảnh 1)

Hàm số gx=fxx33+x2x+2 có bao nhiêu điểm cực đại?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có g'x=f'xx2+2x1

g'x=0f'x=x22x+1=x12. (*)

Dựa vào tương giao của 2 đồ thị y=f'x và y=x12

Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f'(x) như hình vẽ bên dưới.  Hàm số g(x)=f(x)= -x^3/3+x^2-x+2 có bao nhiêu điểm cực đại? (ảnh 2)


Khi đó (*) có 3 nghiệm x=0x=1x=2 

Bảng biến thiên

Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f'(x) như hình vẽ bên dưới.  Hàm số g(x)=f(x)= -x^3/3+x^2-x+2 có bao nhiêu điểm cực đại? (ảnh 3)

Vậy hàm số gx=fxx33+x2x+2có một cực đại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

miny2;2=4 nên x2+x+m24x2+x+m2x2+x+m2mx2x+2=f(x)mx2x2=g(x),x2;2.

+) Xét f(x)=x2x+2,x2;2.

f'(x)=2x1;f'(x)=0x=12

BBT

Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2]  bằng 4. Tính tổng các phần tử của S. (ảnh 1)


Từ BBT suy ra m94miny2;2=4m=94.

+) Xét g(x)=x2x2,x2;2.

g'(x)=2x1;g'(x)=0x=12

BBT

Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2]  bằng 4. Tính tổng các phần tử của S. (ảnh 2)


Từ BBT suy ra m8miny2;2=4m=8.

Vậy S=94;8 Do đó m1+m2=948=234.

Lời giải

Đồ thị hàm số có tiệm cận đứng là x=-2 ; và tiệm cận ngang là y=2.

Vậy tọa độ giao điểm của hai đường tiệm cận có tọa độ là I2;2

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP