Câu hỏi:

12/07/2024 4,146

Cho tam giác ABC vuông tại A (AB < AC) có D và E lần lượt là trung điểm của các cạnh AC và BC. Vẽ EF vuông góc với AB tại F.

a) Chứng minh rằng DE //AB và tứ giác ADEF là hình chữ nhật.

b) Trên tia đối của tia DE lấy điểm G sao cho DG = DE. Chứng minh tứ giác AECG là hình thoi.

c) Gọi O là giao điểm của AE và DF. Chứng minh rằng ba điểm B, O, G thẳng hàng.

d) Vẽ EH vuông góc với AG tại H. Chứng minh rằng tam giác DHF vuông.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét DABC có D, E lần lượt là trung điểm của AC và BC nên DE là đường trung bình của tam giác

Do đó DE // AB hay DE // AF.

Ta có AB AC và DE // AB nên DE AC hay \(\widehat {ADE} = 90^\circ \).

Xét tứ giác ADEF có: \(\widehat {FAD} = \widehat {ADE} = \widehat {AFE} = 90^\circ \)

Do đó ADEF là hình chữ nhật (dấu hiệu nhận biết).

b) Tứ giác AECG có hai đường chéo AC và GE cắt nhau tại trung điểm D của mỗi đường nên là hình bình hành.

Lại có hai đường chéo EG AC (do DE AC)

Do đó AECG là hình thoi.

c) Do ADEF là hình chữ nhật nên hai đường chéo AE và DF cắt nhau tại trung điểm của mỗi đường, hay O là trung điểm của AE.

Do AECG là hình thoi nên EC // AG và EC = AG

Lại có BE = EC (do E là trung điểm của BC) nên BE = AG.

Xét tứ giác ABEG có BE // AG (do EC // AG) và BE = AG

Do đó ABEG là hình bình hành

Suy ra hai đường chéo AE và BG cắt nhau tại trung điểm của mỗi đường

Mà O là trung điểm của AE nên O là trung điểm của BG

Do đó ba điểm B, O, G thẳng hàng.

d) Do ADEF là hình chữ nhật nên AF = DE.

Mà DE = DG nên DG = AF.

Xét tứ giác AFDG có: DG = AF và DG // AF (do DE // AB)

Do đó AFDG là hình bình hành.

Suy ra AG // DF

Lại có EH AG nên EH DF

Xét DEHG vuông tại H có HD là đường trung tuyến ứng với cạnh huyền

Nên HD = ED = \(\frac{1}{2}EG\).

Khi đó DEDH là tam giác cân tại D

Suy ra đường cao DF của tam giác đồng thời là đường phân giác.

Hay \(\widehat {EDF} = \widehat {HDF}\).

Xét DEDF và DHDF có:

DF là cạnh chung;

\(\widehat {EDF} = \widehat {HDF}\) (chứng minh trên);

ED = HD (chứng minh trên)

Do đó DEDF = DHDF (c.g.c)

Suy ra \(\widehat {FED} = \widehat {FHD}\) (hai góc tương ứng)

Mà \(\widehat {FED} = 90^\circ \) (do ADEF là hình chữ nhật)

Do đó \(\widehat {FHD} = 90^\circ \), nên tam giác DHF vuông tại H.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 18,485

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 13,507

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 11,530

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 9,614

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 7,826

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 7,513

Câu 7:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 5,216

Bình luận


Bình luận