Câu hỏi:
23/03/2023 1,411Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C khác A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB, MB cắt (O) tại Q và cắt CH tại N.
a) Chứng minh MA2 = MQ.MB.
b) MO cắt AC tại I. Chứng minh tứ giác AIQM nội tiếp.
c) Chứng minh: IN vuông góc CH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Do Q thuộc đường tròn tâm O đường kính AB nên \(\widehat {AQB} = 90^\circ \).
Xét DAMB vuông tại A có AQ là đường cao, theo hệ thức lượng trong tam giác vuông ta có: MA2 = MQ.MB.
b) Do AM, CM là hai tiếp tuyến của (O) cắt nhau tại M nên MA = MC (tính chất hai tiếp tuyến cắt nhau)
Suy ra M nằm trên đường trung trực của AC.
Lại có OA = OC (cùng bằng bán kính đường tròn (O)) nên O cũng nằm trên đường trung trực của AC.
Do đó OM là đường trung trực của AC nên OM ⊥ AC
Xét tứ giác AIQM có: \(\widehat {AIM} = 90^\circ \) và \(\widehat {AQM} = 90^\circ \)
Mà hai góc này cùng nhìn cạnh AM dưới một góc bằng 90°
Do đó tứ giác AIQM nội tiếp đường tròn.
c) Tứ giác AIQM nội tiếp nên \(\widehat {MAI} + \widehat {MQI} = 180^\circ \)
Lại có \(\widehat {NQI} + \widehat {MQI} = 180^\circ \) (hai góc kề bù)
Do đó \(\widehat {MAI} = \widehat {NQI}\).
Ta có: AM ⊥ AB, CH ⊥ AB nên AM // CH
Do đó \(\widehat {MAI} = \widehat {MAC} = \widehat {ACH}\) (hai góc so le trong)
Suy ra \(\widehat {NQI} = \widehat {ACH}\) hay \(\widehat {NQI} = \widehat {NCI}\)
Mà hai góc này cùng nhìn cạnh IN dưới một góc bằng nhau
Do đó tứ giác NIQC nội tiếp
Suy ra \(\widehat {CIN} = \widehat {CQN}\) (hai góc nội tiếp chắn cung CN)
Lại có \(\widehat {CQN} = \widehat {CQB} = \widehat {CAB}\) (hai góc nội tiếp cùng chắn cung CB của đường tròn (O)).
Do đó \(\widehat {CIN} = \widehat {CAB}\)
Mà hai góc này ở vị trí đồng vị nên IN // AB
Do CH ⊥ AB và IN // AB nên IN ⊥ CH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).
a) Giải phương trình khi m = 0.
b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).
Câu 4:
Câu 5:
Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.
c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.
Câu 6:
Câu 7:
về câu hỏi!