Câu hỏi:

12/07/2024 2,396

Cho nửa đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.

a) Chứng minh: CD = AC + BD.

b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. Chứng minh: AF.AB = KE.EB.

c) EF cắt CB tại I. Chứng minh , suy ra FE là tia phân giác của góc CFD.

d) EA cắt CF tại M, EB cắt DF tại N. Chứng minh: M, I, N thẳng hàng.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a) Do AC, EC là hai tiếp tuyến của (O) cắt nhau tại C nên AC = EC.

          BD, ED là hai tiếp tuyến của (O) cắt nhau tại D nên BD = BE

Do đó AC + BD = EC + BE = CD.

Vậy CD = AC ++ BD.

b) Do E thuộc đường tròn (O) đường kính AB nên \(\widehat {AEB} = 90^\circ \)

DABK vuông tại A, có đường cao AE nên theo hệ thức lượng ta có: AE2 = KE.EB.

DAEB vuông tại E, có đường cao EF nên theo hệ thức lượng ta có: AE2 = AF.AB.

Do đó AF.AB = KE.EB.

c) Xét DABC có AC // IF nên theo định lí Talet ta có:\(\frac{{CI}}{{IB}} = \frac{{AF}}{{FB}}\).

Xét DBCD có IE // BD nên theo định lí Talet ta có:\(\frac{{CI}}{{IB}} = \frac{{CE}}{{ED}}\).

Lại có CE = AC và ED = BD nên \(\frac{{AC}}{{BD}} = \frac{{CE}}{{ED}} = \frac{{CI}}{{IB}} = \frac{{AF}}{{FB}}\) hay \(\frac{{AC}}{{BD}} = \frac{{AF}}{{FB}}\)

Xét \(\Delta AFC\) và \(\Delta BFD\) có:

\(\widehat {CAF} = \widehat {DBF} = 90^\circ \) và \(\frac{{AC}}{{BD}} = \frac{{AF}}{{BF}}\)

Do đó

\( \Rightarrow \widehat {AFC} = \widehat {BFD}\) (hai góc tương ứng)

Mà \(\widehat {AFC} + \widehat {CFE} = 90^\circ \) và \(\widehat {BFD} + \widehat {DFE} = 90^\circ \)

Suy ra \(\widehat {CFE} = \widehat {DFE}\) hay FE là phân giác của \(\widehat {CFD}\).

d) Ta có: AC = EC và OA = OE nên OC là đường trung trực của AE.

Lại có AE KB nên OC // KB.

Mà O là trung điểm của AB nên C là trung điểm của AK.

Do EF // AK nên \(\frac{{EI}}{{KC}} = \frac{{BI}}{{BC}} = \frac{{IF}}{{CA}}\) (hệ quả định lí Talet)

Mà KC = CA nên EI = IF.

Tia IM cắt AC tại Q, tia IB cắt BD tại Q.

CP // IF nên \(\frac{{CP}}{{IF}} = \frac{{MP}}{{MI}}\) (hệ quả định lí Talet)

PA // IE nên \(\frac{{PA}}{{IE}} = \frac{{MP}}{{MI}}\) (hệ quả định lí Talet)

Suy ra \(\frac{{CP}}{{IF}} = \frac{{PA}}{{IE}}\left( { = \frac{{MP}}{{MI}}} \right)\), mà EI = IF nên CP = PA hay P là trung điểm của AC.

Tương tự ta cũng chứng minh được Q là trung điểm của BD.

Ta có: IE // BD nên \(\frac{{CI}}{{IB}} = \frac{{CE}}{{ED}} = \frac{{CA}}{{BD}} = \frac{{2CP}}{{2QB}} = \frac{{CP}}{{QB}}\) và \(\widehat {PCI} = \widehat {QBI}\) (so le trong).

Xét DPCI và DQBI có:

\(\widehat {PCI} = \widehat {QBI}\) và \(\frac{{CI}}{{IB}} = \frac{{CP}}{{QB}}\)

Suy ra

Do đó \(\widehat {PIC} = \widehat {QIB}\) (hai góc tương ứng)

Mà \(\widehat {PIC} + \widehat {PIB} = 180^\circ \) (kề bù) nên \(\widehat {QIB} + \widehat {PIB} = 180^\circ \)

Suy ra P, I, Q thẳng hàng hay M, I, N thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 18,630

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 13,976

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 11,837

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 9,944

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 7,962

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 7,638

Câu 7:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 5,334

Bình luận


Bình luận