Câu hỏi:

12/07/2024 1,896

Cho nửa đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.

a) Chứng minh: CD = AC + BD.

b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. Chứng minh: AF.AB = KE.EB.

c) EF cắt CB tại I. Chứng minh , suy ra FE là tia phân giác của góc CFD.

d) EA cắt CF tại M, EB cắt DF tại N. Chứng minh: M, I, N thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a) Do AC, EC là hai tiếp tuyến của (O) cắt nhau tại C nên AC = EC.

          BD, ED là hai tiếp tuyến của (O) cắt nhau tại D nên BD = BE

Do đó AC + BD = EC + BE = CD.

Vậy CD = AC ++ BD.

b) Do E thuộc đường tròn (O) đường kính AB nên \(\widehat {AEB} = 90^\circ \)

DABK vuông tại A, có đường cao AE nên theo hệ thức lượng ta có: AE2 = KE.EB.

DAEB vuông tại E, có đường cao EF nên theo hệ thức lượng ta có: AE2 = AF.AB.

Do đó AF.AB = KE.EB.

c) Xét DABC có AC // IF nên theo định lí Talet ta có:\(\frac{{CI}}{{IB}} = \frac{{AF}}{{FB}}\).

Xét DBCD có IE // BD nên theo định lí Talet ta có:\(\frac{{CI}}{{IB}} = \frac{{CE}}{{ED}}\).

Lại có CE = AC và ED = BD nên \(\frac{{AC}}{{BD}} = \frac{{CE}}{{ED}} = \frac{{CI}}{{IB}} = \frac{{AF}}{{FB}}\) hay \(\frac{{AC}}{{BD}} = \frac{{AF}}{{FB}}\)

Xét \(\Delta AFC\) và \(\Delta BFD\) có:

\(\widehat {CAF} = \widehat {DBF} = 90^\circ \) và \(\frac{{AC}}{{BD}} = \frac{{AF}}{{BF}}\)

Do đó

\( \Rightarrow \widehat {AFC} = \widehat {BFD}\) (hai góc tương ứng)

Mà \(\widehat {AFC} + \widehat {CFE} = 90^\circ \) và \(\widehat {BFD} + \widehat {DFE} = 90^\circ \)

Suy ra \(\widehat {CFE} = \widehat {DFE}\) hay FE là phân giác của \(\widehat {CFD}\).

d) Ta có: AC = EC và OA = OE nên OC là đường trung trực của AE.

Lại có AE KB nên OC // KB.

Mà O là trung điểm của AB nên C là trung điểm của AK.

Do EF // AK nên \(\frac{{EI}}{{KC}} = \frac{{BI}}{{BC}} = \frac{{IF}}{{CA}}\) (hệ quả định lí Talet)

Mà KC = CA nên EI = IF.

Tia IM cắt AC tại Q, tia IB cắt BD tại Q.

CP // IF nên \(\frac{{CP}}{{IF}} = \frac{{MP}}{{MI}}\) (hệ quả định lí Talet)

PA // IE nên \(\frac{{PA}}{{IE}} = \frac{{MP}}{{MI}}\) (hệ quả định lí Talet)

Suy ra \(\frac{{CP}}{{IF}} = \frac{{PA}}{{IE}}\left( { = \frac{{MP}}{{MI}}} \right)\), mà EI = IF nên CP = PA hay P là trung điểm của AC.

Tương tự ta cũng chứng minh được Q là trung điểm của BD.

Ta có: IE // BD nên \(\frac{{CI}}{{IB}} = \frac{{CE}}{{ED}} = \frac{{CA}}{{BD}} = \frac{{2CP}}{{2QB}} = \frac{{CP}}{{QB}}\) và \(\widehat {PCI} = \widehat {QBI}\) (so le trong).

Xét DPCI và DQBI có:

\(\widehat {PCI} = \widehat {QBI}\) và \(\frac{{CI}}{{IB}} = \frac{{CP}}{{QB}}\)

Suy ra

Do đó \(\widehat {PIC} = \widehat {QIB}\) (hai góc tương ứng)

Mà \(\widehat {PIC} + \widehat {PIB} = 180^\circ \) (kề bù) nên \(\widehat {QIB} + \widehat {PIB} = 180^\circ \)

Suy ra P, I, Q thẳng hàng hay M, I, N thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 17,655

Câu 2:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 9,438

Câu 3:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 7,204

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 7,130

Câu 5:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 4,821

Câu 6:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 4,426

Câu 7:

Cho nửa đường tròn tâm O có đường kính AB, Ax là tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn nằm cùng phía đối với AB), C là một điểm thuộc nửa đường tròn, H là hình chiếu của C trên AB. Đường thẳng qua O và vuông góc với AC cắt Ax tại M. Gọi I là giao điểm của MB và CH. Chứng minh rằng CI = IH.

Xem đáp án » 12/07/2024 3,491

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store